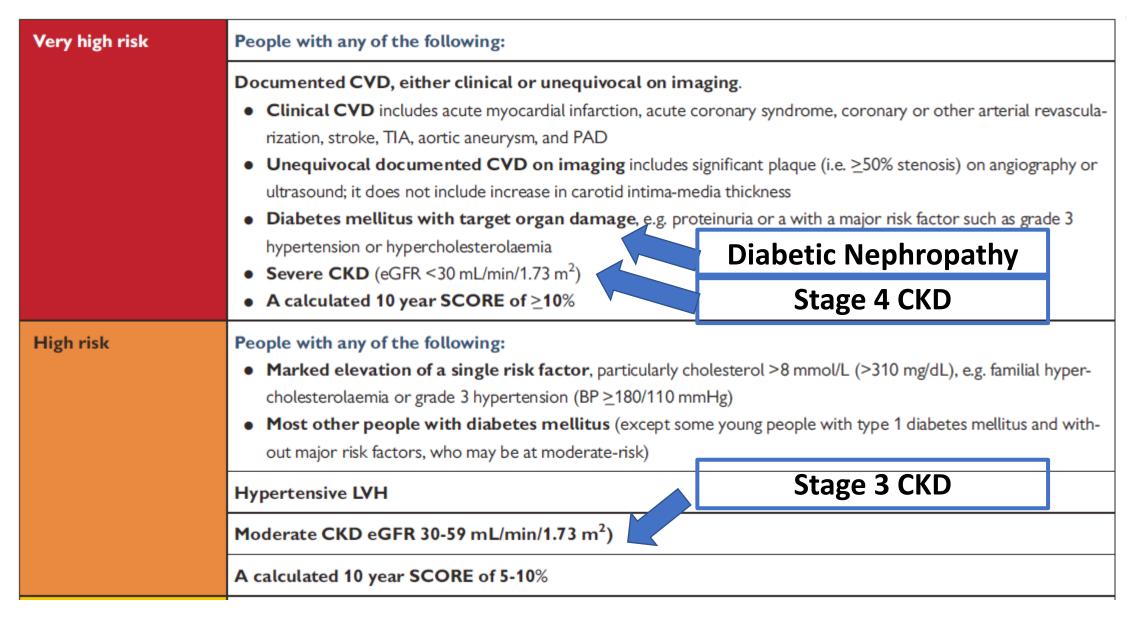
SPRINT: Consequences for CKD patients

29^e Workshop Nierziekten Papendal 2018 December 12, 2018

MICHAEL ROCCO, MD, MSCE VARDAMAN M. BUCKALEW JR. PROFESSOR OF MEDICINE PROFESSOR OF PUBLIC HEALTH SCIENCES WAKE FOREST SCHOOL OF MEDICINE WINSTON-SALEM, NORTH CAROLINA

Objectives


Weigh the risks and benefits of strict control of systolic blood pressure in patients with CKD

Understand how new data supports a lower blood pressure goal in the elderly

Reconcile the "differences" between the SPRINT and ACCORD results

Evaluate the severity and recovery of acute kidney injury in SPRINT

Ten year CV risk categories in SCORE

Hypertension disease staging

Hypertension			BP (mmH	g) grading	
disease staging	Other risk factors, HMOD, or disease	High normal SBP 130-139 DBP 85-89	Grade 1 SBP 140-159 DBP 90-99	Grade 2 SBP 160-179 DBP 100-109	Grade 3 SBP ≥180 or DBP ≥110
No other ris factors		Low risk	Low risk	Moderate risk	High risk
Stage 1 (uncomplicated)	1 or 2 risk factors	Low risk	Moderate risk	Moderate to high risk	High risk
	≥3 risk factors	Low to Moderate risk	Moderate to high risk	High Risk	High risk
Stage 2 (asymptomatic disease)	HMOD, CKD grade 3, or diabetes mellitus without organ damage	Moderate to high risk	High risk	High risk	High to very high risk
Stage 3 (established disease)	Established CVD, CKD grade ≥4, or diabetes mellitus with organ damage	Very high risk	Very high risk	Very high risk	Very high risk

Risk for middle aged male

2018 ESC/ESH guidelines for management of arterial hypertension. European Heart Journal 39:3-021-3104, 2018.

ESC/ESH BP Thesholds for treatment

Table 19 Summary of office blood pressure thresholds for treatment

Age group	Office SBP treatment threshold (mmHg)				Office DBP treatment threshold (mmHg)	
	Hypertension	+ Diabetes	+ CKD	+ CAD	+ Stroke/TIA	
18 - 65 years	≥140	≥140	≥140	≥140 ^a	≥140 ^a	≥90
65 - 79 years	≥140	≥140	≥140	≥140 ^a	≥140ª	≥90
≥80 years	≥160	≥160	≥160	≥160	≥160	≥90
Office DBP treatment threshold (mmHg)	≥90	≥90	≥90	≥90	≥90	

2018 ESC/ESH guidelines for management of arterial hypertension. European Heart Journal 39:3-021-3104, 2018.

ESC/ESH Office blood pressure target range

Table 23Office blood pressure treatment target range

Age group	Office SBP treatment target ranges (mmHg)					Office DBP treatment target range (mmHg)
	Hypertension	+ Diabetes	+ CKD	+ CAD	+ Stroke ^a /TIA	
18 - 65 years	Target to 130 or lower if tolerated Not <120	Target to 130 or lower if tolerated Not <120	Target to <140 to 130 if tolerated	Target to 130 or lower if tolerated Not <120	Target to 130 or lower if tolerated Not <120	70–79
65 - 79 years ^b	Target to 130-139 if tolerated	Target to 130-139 if tolerated	Target to 130-139 if tolerated	Target to 130-139 if tolerated	Target to 130-139 if tolerated	70–79
≥80 years ^b	Target to 130-139 if tolerated	Target to 130-139 if tolerated	Target to 130-139 if tolerated	Target to 130-139 if tolerated	Target to 130-139 if tolerated	70–79
Office DBP treatment target range (mmHg)	70–79	70–79	70–79	70–79	70–79	

2018 ESC/ESH guidelines for management of arterial hypertension. European Heart Journal 39:3-021-3104, 2018.

Differences in ACC/AHA and ESC/ESH BP guidelines

	2017 ACC/AHA	2018 ESC/ESH
Classification of blood	Stage 1 hypertension: SBP 130-139 mm Hg or	High normal BP: SBP 130-139 mm Hg or DBP
pressure status and	DBP 80-89 mm Hg.	80-89 mm Hg.
definition of hypertension (office BP)	Stage 2 hypertension: SBP ≥140 mm Hg or DBP ≥90 mm Hg.	Hypertension (Grade 1-3): SBP ≥140 mm Hg or DBP ≥90 mm Hg.
Lifestyle interventions	Core management for prevention and treatment of hypertension.	Predominantly lifestyle interventions for adults with high normal BP; only consider drug
All patients with 🛛 🛶	Complemented by drug therapy for adults	therapy for very high-risk patients. 🖊
CKD stage 3 or 4	with stage 1 hypertension and a high risk of CVD (prior CVD event or 10-year risk of ASCVD risk ≥10%) Drug therapy for Stage 2 hypertension (≥140/90mmHg)	Stage 4 CKD or diabetic nephropathy Lifestyle interventions alone for uncomplicated low risk grade 1 hypertension for 3-6 months, with drug therapy thereafter if BP not controlled.

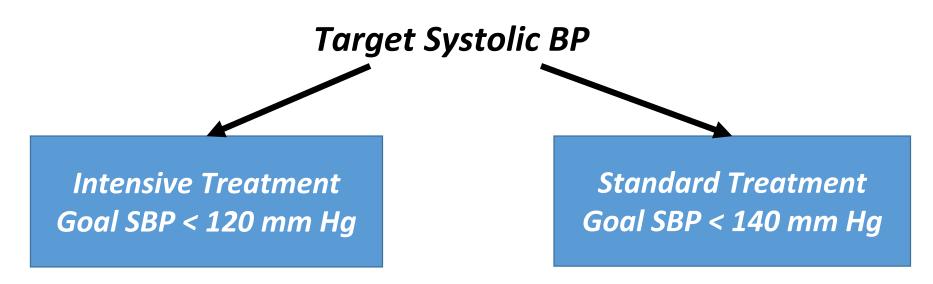
Stage 3 CKD, not diabetic

Differences in hypertension definition

- The definition of hypertension in the European guideline is unchanged, reflecting the level of BP (140/90 mmHg) at which drug treatment is recommended for all patients.
- In the US guideline, hypertension is defined by an average systolic BP of at least 130 mmHg or diastolic BP of 80 mmHg or higher, based on an interpretation of risk and treatment effect.
- This results in a different approach to treatment of adults with a systolic BP of 130 through 139 mmHg or diastolic BP of 80 through 89 mm Hg, who are classified as having stage 1 hypertension in the US guideline and high normal BP in the European guideline.

Treatment for SBP 130 – 139 mm Hg and DBP 80 – 89 mm Hg

- The US guideline recommends:
 - Nonpharmacological therapy for all adults with stage 1 hypertension
 - Additional antihypertensive drug therapy for the approximately 30% in this highly prevalent BP category who are deemed to be at high risk for atherosclerotic CVD (10-year risk of atherosclerotic CVD ≥10%). This includes all patients with CKD stages 3-5.
- In contrast, the European guideline predominantly recommends lifestyle interventions, with consideration of antihypertensive drug therapy only in adults at very high risk, i.e., with established CVD, especially coronary artery disease.


Differences in ACC/AHA and ESC/ESH BP guidelines

	2017 ACC/AHA	2018 ESC/ESH
BP thresholds for intervention with BP- lowering drug therapy	SBP ≥130 mm Hg or DBP ≥80 mm Hg for adults at high risk for CVD (prior CVD event or 10-year ASCVD risk ≥10%).	SBP ≥140 mm Hg or DBP ≥90 mm Hg for all adults up to age of 80 years. SBP ≥160 mm Hg or DBP ≥90 mm Hg for adults aged >80 years.(who have not yet received treatment)
		Treatment may be considered in adults with high normal BP who are at very high risk due to established CVD, especially coronary artery disease.
BP targets for treatment	SBP <130 mm Hg and DBP <80 mm Hg for all adults, except those ≥65 years where target should be an SBP <130 mm Hg.	SBP 130 mm Hg or lower but not <120 mm Hg in adults 18-65 years.
		Less aggressive targets in adults aged >65 years – SBP target range <140 – 130 mm Hg if tolerated, but not usually <130 mm Hg.

Whelton PK, Williams B. JAMA. doi:10.1001/jama.2018.16755 [published November 6, 2018]

SPRINT Research Question

Randomized controlled clinical trial to examine effect of more intensive high blood pressure treatment strategy than is currently recommended (standard treatment)

SPRINT design details available at ClinicalTrials.gov (NCT01206062) Ambrosius WT et al. Clin Trials. 2014;11:532-546.

Major Inclusion Criteria

- 50 years of age or older
- Systolic blood pressure: 130 180 mm Hg (treated or untreated)
- At least one additional cardiovascular disease (CVD) risk factor
 - Clinical or subclinical CVD (excluding stroke)
 - Chronic kidney disease (CKD), defined as eGFR between 20 and 59 ml/min/1.73m²
 - Framingham Risk Score for 10-year CVD risk $\geq 15\%$
 - Age \geq 75 years

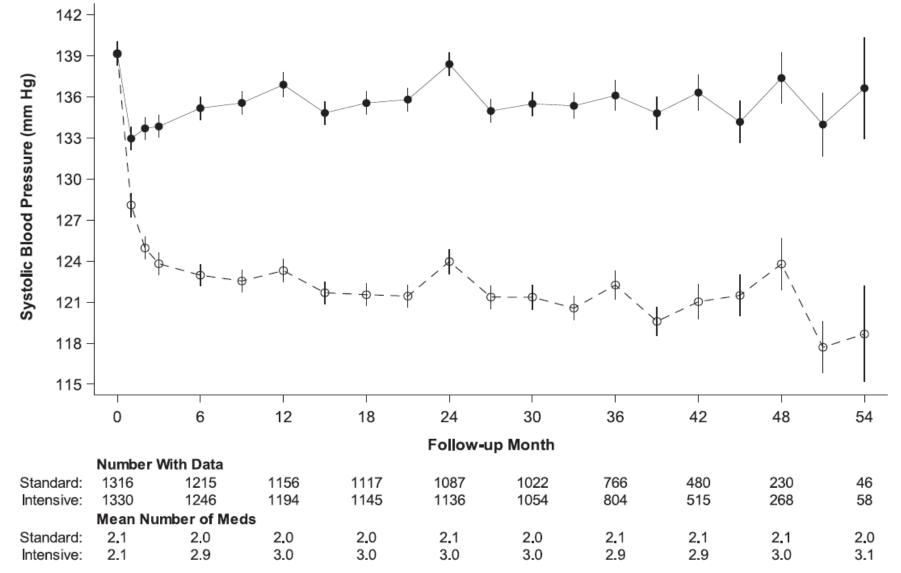
Major Exclusion Criteria

- Stroke
- Diabetes mellitis (ACCORD)
- Polycystic kidney disease (HALT-PKD)
- Congestive heart failure (symptoms or EF < 35%)
- Proteinuria >1 gram/day
- CKD with eGFR < 20 mL/min/1.73m² (MDRD)
- Adherence concerns

SPRINT Results in CKD cohort

CLINICAL RESEARCH www.jasn.org

Effects of Intensive BP Control in CKD

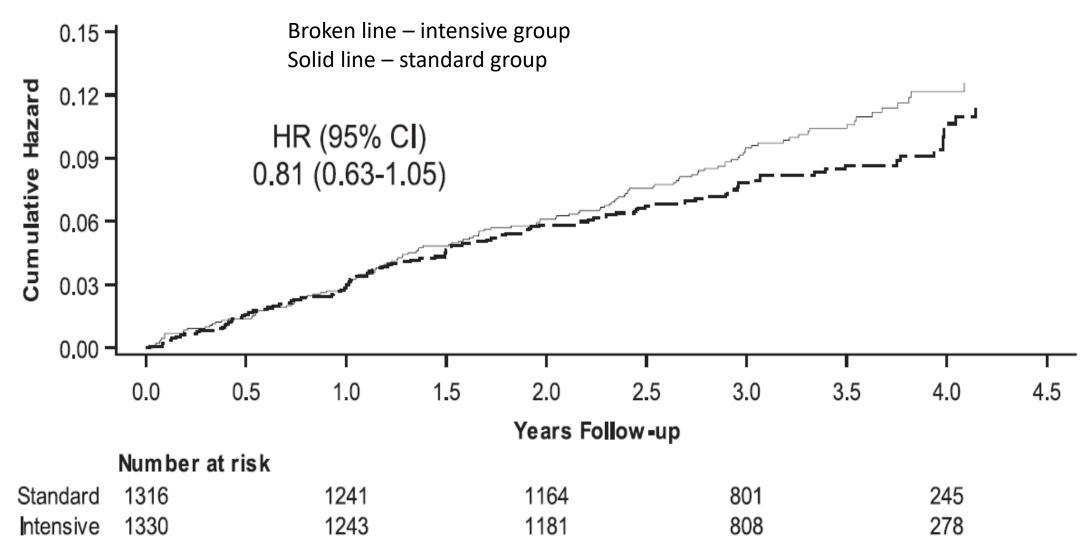

Alfred K. Cheung,*[†] Mahboob Rahman,^{‡§} David M. Reboussin,¹ Timothy E. Craven,[§] Kare SBP goal in CKD subgroup death Lower sequence rates of CVD and course Tom Greene,¹ Paul L. Kimmel,** William C. Cushman,^{††} Amret T. Hawfield,^{‡‡}

appropriate target for BP in patients with CKD and hypertension remains uncertain. We report prespecified subgroup analyses of outcomes in participants with baseline CKD in the Systolic Blood Pressure Intervention Trial. We randomly assigned participants to a systolic BP target of <120 mm Hg (intensive group; n=1330) or <140 mm Hg (standard group; n=1316). After a median follow-up of 3.3 years, the primary composite cardiovascular outcome occurred in 112 intensive group and 131 standard group CKD participants (hazard ratio [HR], 0.81; 95% confidence interval [95% CI], 0.63 to 1.05). The intensive group also had a lower rate of all-cause death (HR, 0.72; 95% CI, 0.53 to 0.99). Treatment effects did not differ between participants with and without CKD (P values for interactions \geq 0.30). The prespecified main kidney

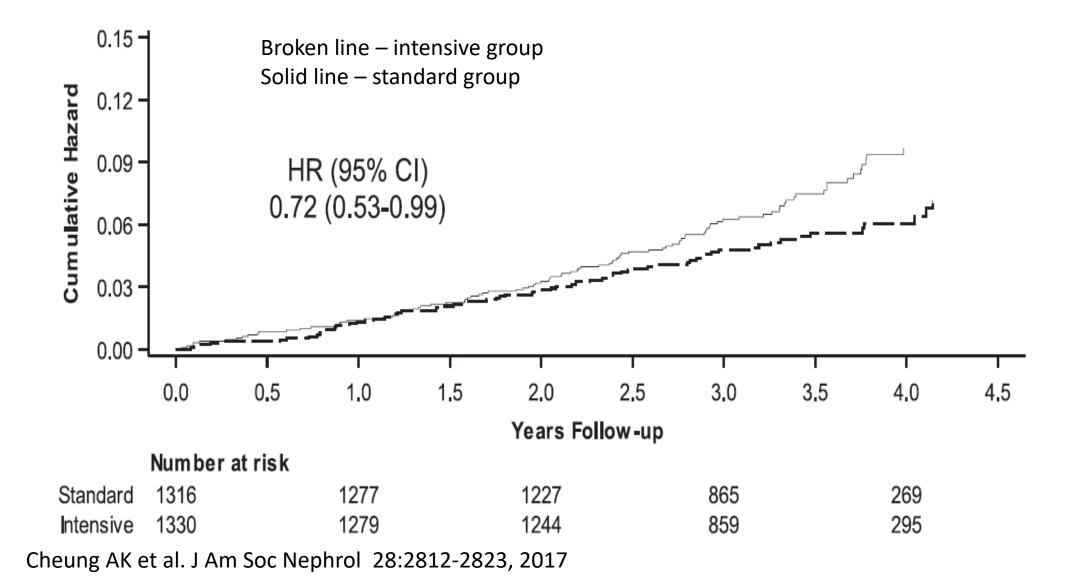
Baseline characteristics of SPRINT participants with CKD

Characteristics	Intensive treatment (n=1330)	Standard treatment (n=1316)	Total (n=2646)
Age, mean + SD (year)	72.0 ± 9.0	71.9 ± 9.5	71.9 ± 9.3
Age ≥75 years, no. (%)	584 (43.9)	577 (43.8)	1161 (43.9)
Women, no. (%)	537 (40.4)	521 (39.6)	1058 (40.0)
Serum creatinine, mg/dl	1.43 (0.39)	1.43 (0.38)	1.43 (0.39)
eGFR, mean (SD), ml/min per 1.73m ²	47.9 (9.5)	47.9 (9.5)	47.9 (9.5)
Urinary ACR (median (interquartile range)	12.8 (6.5 – 42.6)	13.8 (6.1 – 43.5)	13.3 (6.4 – 43.1)

Blood pressure during SPRINT follow-up


Number of anti-hypertensive medications

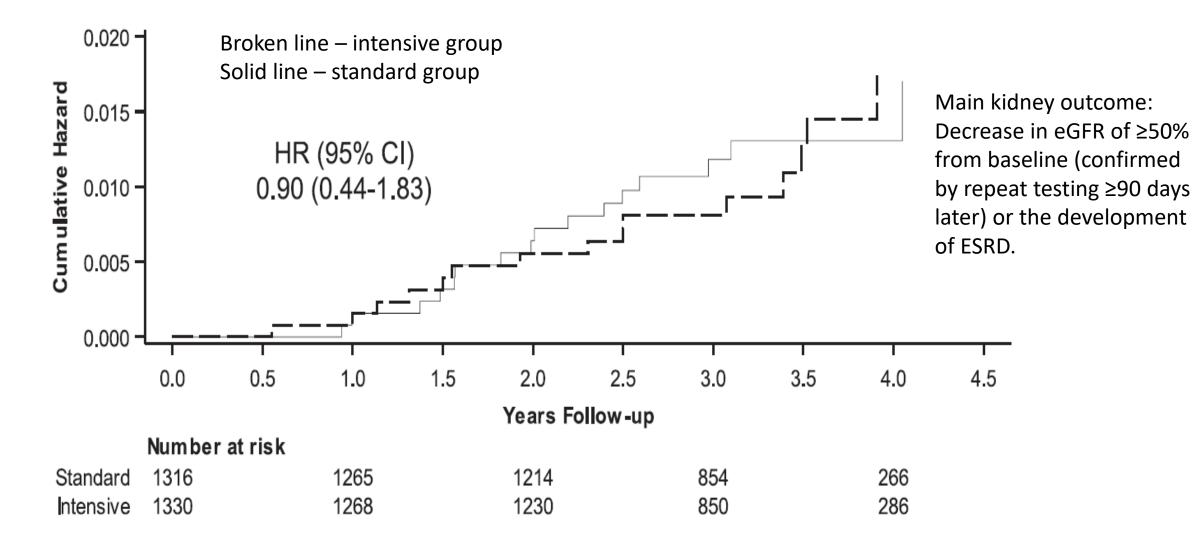
Medication Usage	Intensive Treatment, <i>n</i> =1330	Standard Treatment, n=1316
No. of medications		
Mean no. of medications (SD)	2.90 (1.24)	2.02 (1.23)
Zero medications, no. (%)	25 (1.9)	123 (9.3)
One medication, no. (%)	124 (9.3)	359 (27.3)
Two medications, no. (%)	376 (28.3)	399 (30.3)
Three medications, no. (%)	398 (29.9)	278 (21.1)
Four or more medications, no. (%)	407 (30.6)	157 (11.9)


Anti-hypertensive medications by type

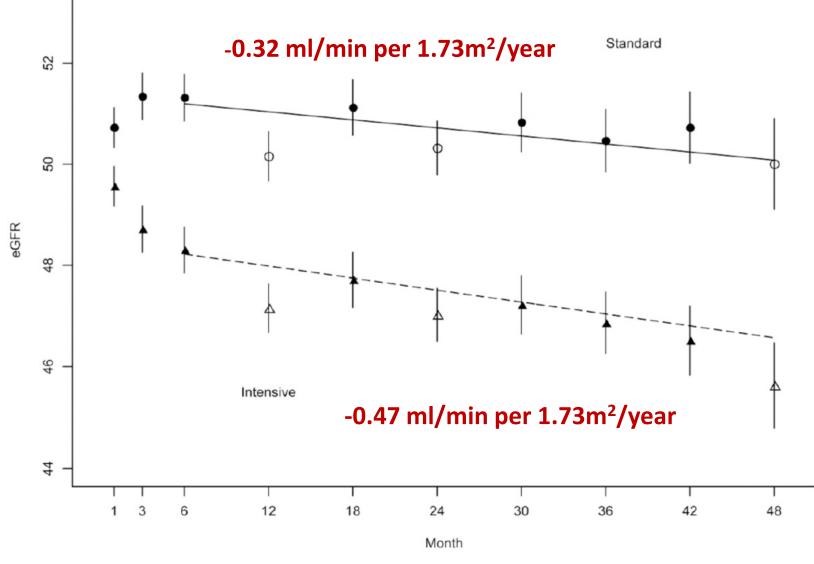
Medication	Intensive treatment; n = 1330	Standard treatment; n = 1316
RAS blockers	71.7%	57.0%
ACE-I	35.4%	30.1%
ARBs	36.2%	27.0%
Diuretics	67.3%	46.6%
Thiazide	46.8%	30.1%
Loop	18.7%	15.2%
Alpha-1 blockers	12.9%	6.7%
Calcium channel blockers	60.9%	37.3%
Direct vasodilators	11.5%	4.2%
Beta-blockers	53.3%	42.2%

Kaplan Meier curve for primary cardiovascular outcome – SPRINT CKD

Kaplan Meier curve for all cause death - SPRINT CKD cohort


SAEs and conditions of interest – SPRINT CKD

Frants		Events er 1 yr)	Intensive Treatment Versus Standard Treatment	
Events	Intensive Treatment, <i>n</i> =1330	Standard Treatment, <i>n</i> =1316	HR (95% CI)	P Value
Total SAEs ^a	627 (19.8)	640 (20.2)	0.98 (0.87 to 1.09)	0.67
Conditions of interest				
(emergency department visits or SAEs)				
Hypotension	51 (1.2)	38 (0.9)	1.34 (0.88 to 2.04)	0.17
Syncope	54 (1.3)	42 (1.0)	1.28 (0.86 to 1.92)	0.22
Bradycardia	37 (0.9)	40 (1.0)	0.92 (0.59 to 1.44)	0.71
Electrolyte abnormalities	69 (1.7)	51 (1.2)	1.35 (0.94 to 1.94)	0.10
Injurious fall	125 (3.1)	138 (3.4)	0.90 (0.71 to 1.15)	0.40
ARF	114 (2.8)	78 (1.9)	1.46 (1.10 to 1.95)	0.01


Monitored clinical events – SPRINT CKD

Events		Events r 1 yr)	Intensive Treatment Versus Standard Treatment	
Events	Intensive Treatment, <i>n</i> =1330	Standard Treatment, <i>n</i> =1316	HR (95% CI)	P Value
Monitored clinical events				
Adverse clinical measures				
Serum sodium <130 mmol/L	49 (2.7)	35 (0.9)	1.39 (0.90 to 2.15)	0.13
Serum sodium >150 mmol/L	3 (0.1)	0 (0)		>0.99
Serum potassium <3.0 mmol/L	30 (0.7)	16 (0.4)	1.87 (1.02 to 3.43)	0.04
Serum potassium >5.5 mmol/L	106 (2.7)	78 (2.0)	1.36 (1.01 to 1.82)	0.04
Orthostatic hypotension				
Without dizziness	301 (8.5)	302 (8.5)	0.99 (0.85 to 1.17)	0.94
With dizziness	24 (0.6)	23 (0.6)	1.04 (0.59 to 1.84)	0.89

Kaplan Meier curve for main kidney outcome – SPRINT CKD cohort

Change in eGFR in SPRINT CKD participants

Open symbols – fasting creatinine values

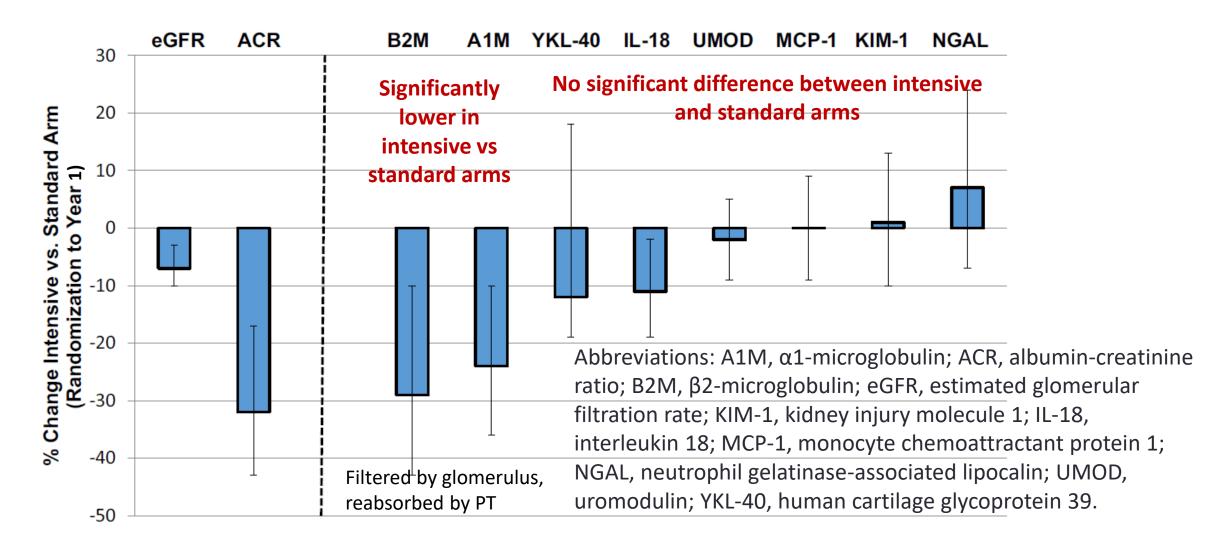
Closed symbols – non-fasting values

Difference in slopes after 6 months: p = 0.03

Cheung AK et al. J Am Soc Nephrol. 28: 2812-2823, 2017

Urinary kidney biomarkers in the SPRINT CKD cohort

- Random sample of 978 SPRINT participants with prevalent chronic kidney disease (CKD) defined as eGFR < 60 mL/min/1.73 m² by the CKD-EPI (CKD Epidemiology Collaboration) creatinine-cystatin C equation at baseline.
- Urine biomarkers were measured at baseline and years 1 and 4
- Tubular reabsorption
 - β 2-microglobulin [β 2M], α 1-microglobulin [α 1M]),
 - Serum proteins that are filtered by the glomerulus and then reabsorbed by the proximal tubule
- Synthesized solely by the proximal tubule
 - Uromodulin (UMOD)


Malhotra R et al. AJKD 2018 (in press) https://doi.org/10.1053/j.ajkd.2018.07.015

Urinary biomarker characteristics

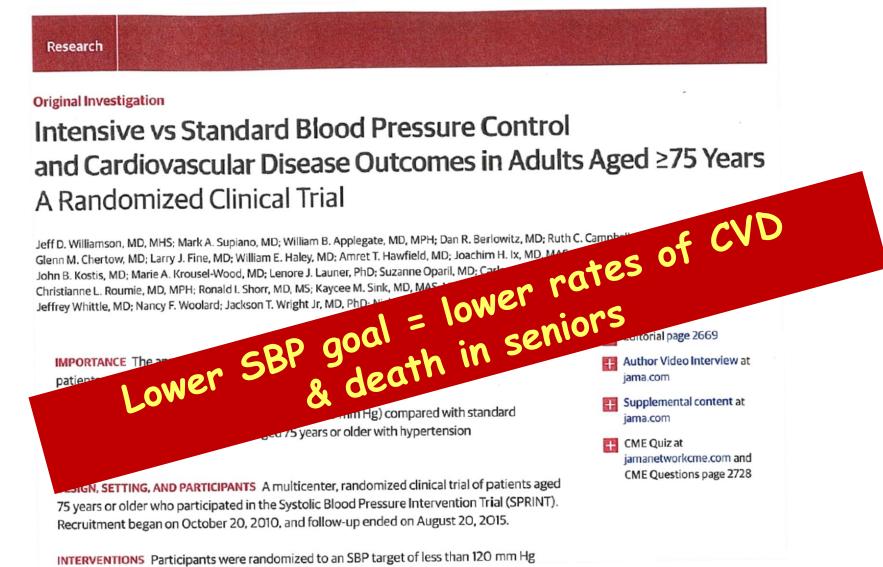
- The other 6 urinary tubule biomarkers are produced in kidney tissue in response to damage, inflammation, and repair and are not known to be filtered at the glomerulus.
- Tubular injury
 - Interleukin 18 (IL-18), kidney injury molecule 1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL)
- Tubular inflammation
 - Monocyte chemoattractant protein 1 (MCP-1)
- Tubular repair
 - Human cartilage glycoprotein 40 (YKL-40)

Malhotra R et al. AJKD 2018 <u>https://doi.org/10.1053/j.ajkd.2018.07.015</u>

Change in urinary biomarkers in CKD cohort; percent change at year 1

Malhotra R et al. AJKD 2018 https://doi.org/10.1053/j.ajkd.2018.07.015

Urinary biomarker conclusions


- None of the 8 tubule marker levels was higher in the intensive arm compared to the standard arm at year 4.
- Only two tubule function markers were lower at year 1 in the intensive versus standard arm, respectively
 - β₂ microglobulin was 29% lower (95% Cl, 10%-43%)
 - α₁ microglobulin was 24% lower (95% Cl, 10%-36%)
- Thus, intensive SBP lowering results in a hemodynamic decrease in GFR, which not only lowers creatinine filtration, but also lowers β 2M and α 1M filtration in the presence of preserved tubular absorptive capacities, resulting in lower urine concentrations

Urinary biomarker study implications

- Because higher urine levels of these kidney tubule markers have been linked to CKD progression, dialysis therapy initiation, and adverse health outcomes, the present results provide reassurance that the eGFR decline with intensive BP lowering is likely predominantly hemodynamic in nature.
- These findings support, but do not prove, the hypothesis that hemodynamic effects on eGFR may persist for years without necessarily causing tubule damage.
- In addition, our findings suggest that the tubule health markers may have utility to assess intrinsic versus hemodynamic changes in kidney function in other settings that are known to influence renal perfusion.

Malhotra R et al. AJKD 2018 <u>https://doi.org/10.1053/j.ajkd.2018.07.015</u>

SPRINT in Participants ≥75 years

Williamson, JD et al. JAMA 315: 2673-2682, 2016

SPRINT Results in Participants ≥75 years

- Mean age, 79.9 years; 37.9% women, n = 2560
- There was a significantly lower rate of the primary composite outcome: 102 events in the intensive treatment group 148 events in the standard treatment group Hazard ratio [HR], 0.66 [95% CI, 0.51 - 0.85]

and in all-cause mortality

73 deaths (intensive arm) vs 107 deaths (Standard arm) HR, 0.67 [95% CI, 0.49 - 0.91]

 The overall rate of serious adverse events was not different between treatment groups

48.4% in the intensive treatment group vs

48.3% in the standard treatment group;

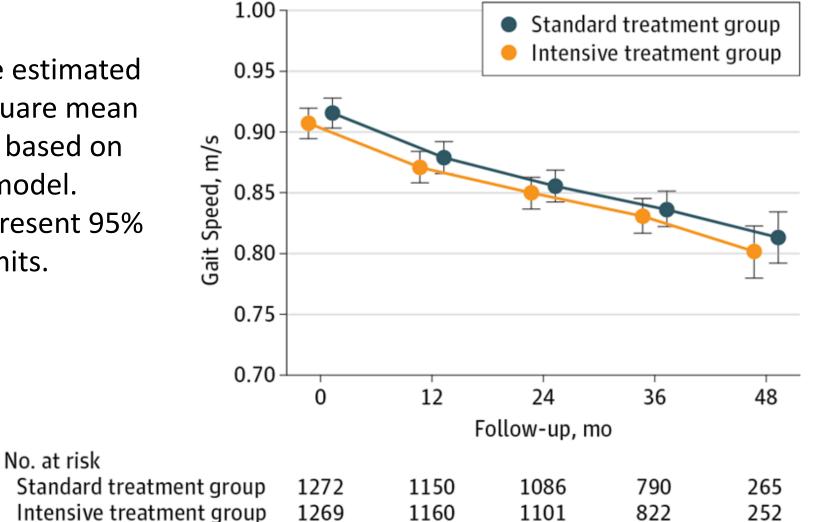
HR, 0.99 [95% CI, 0.89 - 1.11]

SPRINT in participants ≥75 years

Research

JAMA Internal Medicine | Original Investigation

Effect of Intensive Blood Pressure Control on Gait Speed Were seen and a contraction in gain speed to retrieve the reduction in gain speed or mobility or retrieve to reduction in gain speed or mobility or retrieve to re and Mobility Limitation in Adults 75 Years or Older


75 years or older with hypertension and no history of type 2 diabetes or stroke who participated in the Systolic Blood Pressure Intervention Trial (SPRINT). Data were collected from November 8, 2010, to December 1, 2015. Analysis was based on intention to treat.

INTERVENTIONS Participants were randomized to intensive treatment with a systolic BP target of less than 120 mm Hg (n = 1317) vs standard treatment with a BP target of less than 140 mm Hg (n = 1319).

Odden MC et al. JAMA Int Med 177: 500-507, 2017

Least squares mean for gait speed by treatment group

Circles denote estimated least mean square mean for gait speed based on linear mixed model. Error bars represent 95% confidence limits.

Odden MC et al. JAMA Int Med 177: 500-507, 2017

SPRINT and Risk of Mild Cognitive Impairment (MCI) and Dementia

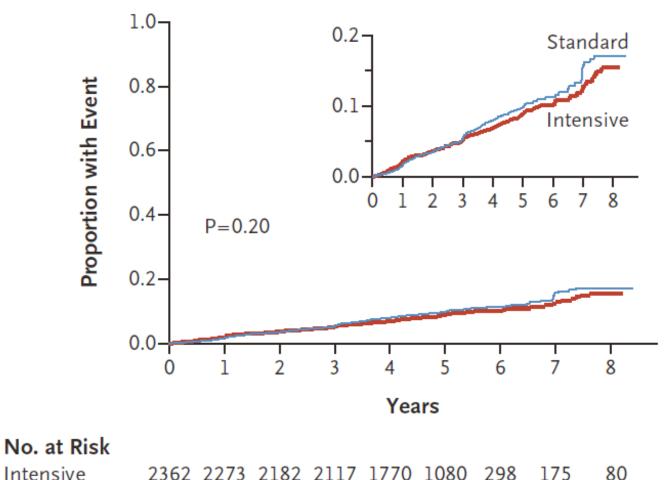
- Treatment in SPRINT was stopped on 8/20/2015 due to cardiovascular disease (CVD) benefit after a median follow up of 3.26 years, but cognitive assessment continued until 6/29/2018.
- Participant mean age was 67.9 years (35.6% women) and 8,626 (92.1%) completed at least one follow-up cognitive assessment
- There was a significantly lower rate of adjudicated incident MCI (HR = 0.83, 95% CI: 0.71 to 0.97, p = 0.02)
- There was a non-significant reduction in probable dementia (HR = 0.84, 95% CI: 0.67 to 1.05, p = 0.12).
- The combined outcome of MCI plus probable all cause dementia was significantly lower (HR = 0.86, 95% CI: 0.75 to 0.99, p = 0.03) in the intensive *versus* standard treatment group.

Williamson JD et al. Alzheimer's Association International Conference 2018, Abstract #27525

SPRINT and Brain Structure

- 673 participants in the Systolic Blood Pressure Intervention Trial (SPRINT) were recruited for brain magnetic resonance imaging (MRI)
- Primary outcomes included change in total white matter lesion (WML) volume and total brain volume (TBV)
- Follow-up MRIs were obtained for 454 (67.4%) participants at a median of 3.98 years post-randomization.
- White matter lesion volume (WML)
 - Intensive arm: WML increased by 0.28 cm³ (95% CI: -0.03 to 0.58)
 - Standard arm: WML increased by 0.92 cm³ (95% CI: 0.59 to 1.24)
 - Mean difference = 0.64 cm^3 , p = 0.004.
- Total brain volume (TBV)
 - Intensive arm: TBV decreased by 27.3 cm³ (95% CI: 24.8 to 29.8)
 - Standard arm: TBV decreased by 24.8 cm³ (95% CI: 22.0 to 27.5)
 - Mean difference = 2.54 cm^3 , p = 0.16.

ACCORD Trial – BP control in patients with diabetes mellitus


- ACCORD-BP was a randomized, multicenter, 2 X 2 factorial clinical trial.
 - Patients were randomized to either an intensive BP control strategy (goal SBP < 120 mmHg) or a standard BP control strategy (goal SBP < 140 mmHg)
 - Patients also randomized to an intensive (hemoglobin A1c goal <6.0%) or standard glucose control strategy (hemoglobin A1c goal 7.0–7.9%).
- In the Action to Control Cardiovascular Risk in Diabetes Blood Pressure (ACCORDBP) study, an intensive BP control strategy to achieve a systolic BP (SBP) <120 mmHg did not significantly reduce the composite of CVD death, nonfatal myocardial infarction, and nonfatal stroke compared with a standard SBP control goal of <140 mmHg

Primary outcome in ACCORD

A Primary Outcome

Standard

2371

2274 2196 2120 1793 1127

195

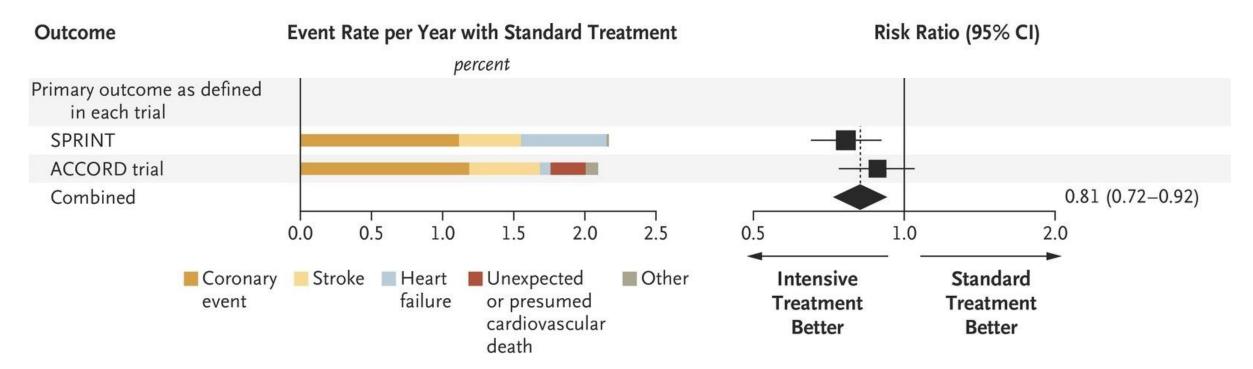
358

108

The annual rate of the primary outcome was:

- 1.87% in the intensivetherapy group
- 2.09% in the standardtherapy group

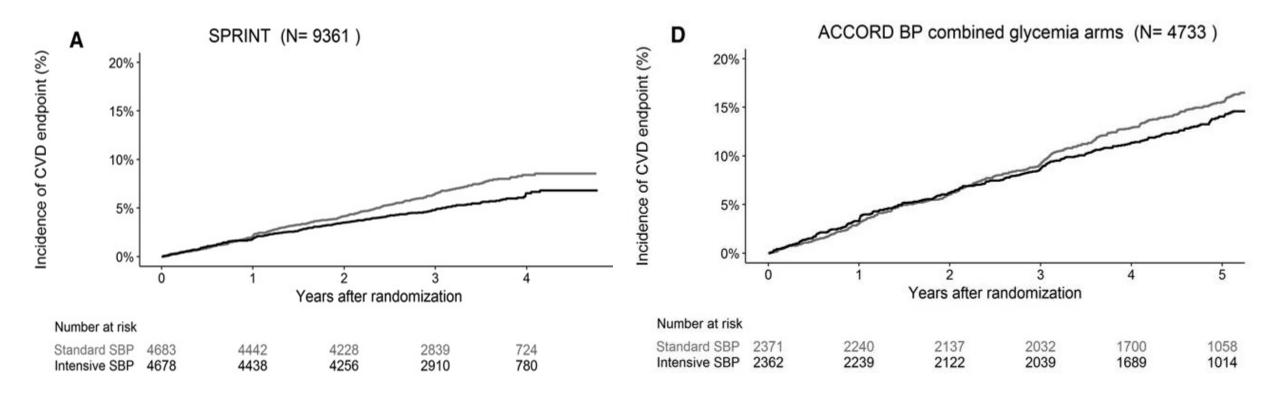
Hazard ratio with intensive therapy is 0.88


95% confidence interval [CI] 0.73 - 1.06; P = 0.20)

N Engl J Med 2010;362:1575-85.

Why do the ACCORD and SPRINT results differ?

- Multiple hypotheses have been proposed to explain the apparent discordance between these two studies.
- Given that the most notable difference in the patient populations was the absence of type 2 diabetes mellitus (T2DM) in SPRINT and the inclusion of T2DM in ACCORD-BP it is possible that intensive BP control exerts differential effects in patients with and without T2DM
- However, this argument seems counterintuitive given the strong relationship between high BP and CVD and the enhanced CVD risk of patients with T2DM. Indeed, the risk profile of adults with T2DM in the U.S. bears a striking similarity to that of SPRINT participants

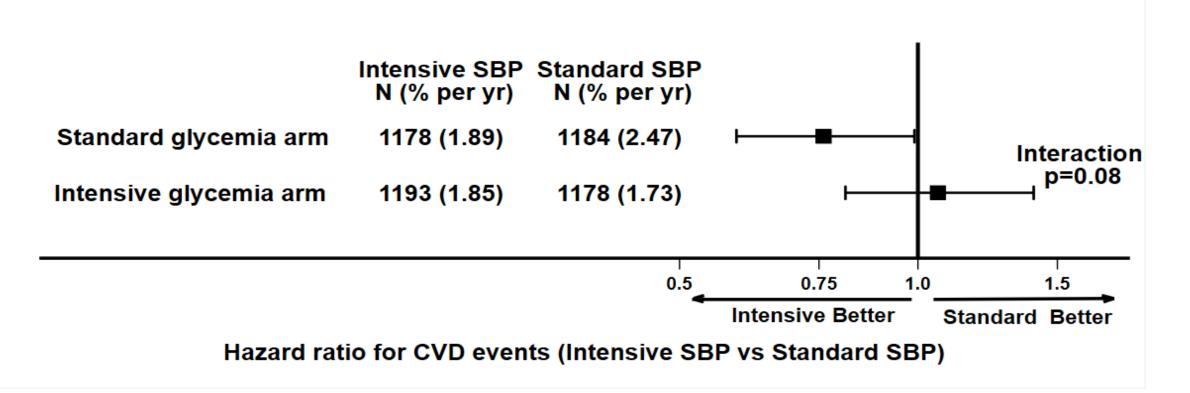

Why are ACCORD BP and SPRINT CV results different?

The often cited reason is that ACCORD BP had fewer participants than SPRINT and therefore, lower power.

Perkovic V, Rodgers A. N Engl J Med 373;2175-2178

ACCORD BP Had Higher Events Rate than SPRINT

What about the Glycemia arm of ACCORD?

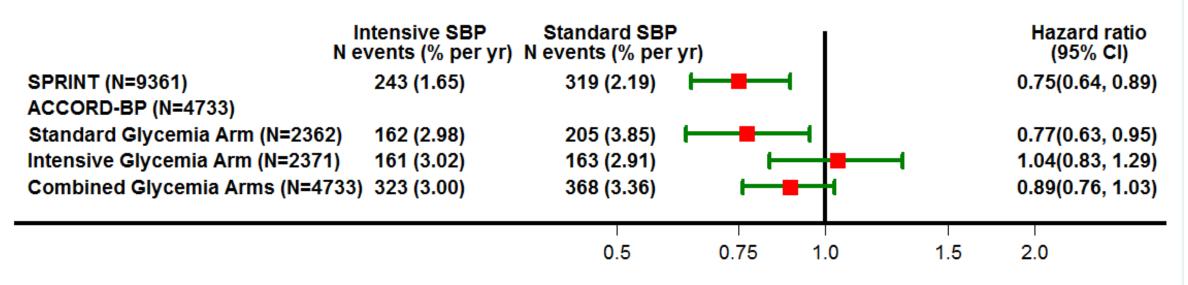

- The finding of higher mortality in the intensive-therapy group led to a discontinuation of intensive therapy after a mean of 3.5 years of follow-up
- 257 patients in the intensive-therapy group died, as compared with 203 patients in the standard therapy group

• Hazard ratio, 1.22; 95% Cl, 1.01 to 1.46; P = 0.04

- The use of intensive therapy to target normal glycated hemoglobin levels for 3.5 years increased mortality and did not significantly reduce major cardiovascular events.
- These findings identify a previously unrecognized harm of intensive glucose lowering in high-risk patients with type 2 diabetes mellitus.

ACCORD study group. N Engl J Med 2008; 358:2545-59

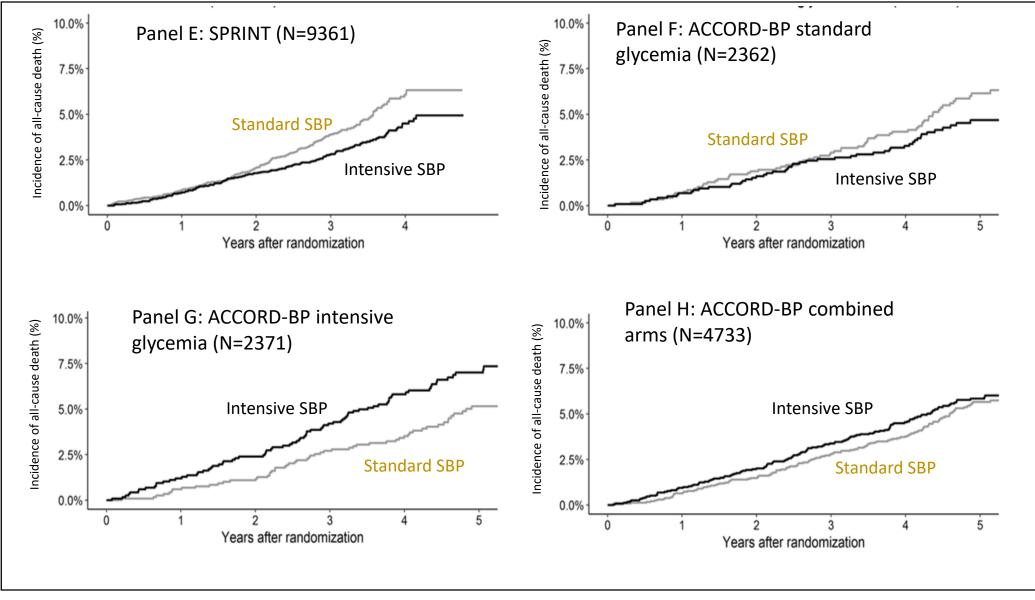
Potential interaction between intensive glycemia and intensive SBP arms for Primary CVD Outcome in ACCORD BP


Supplement to: The ACCORD Study Group. N Engl J Med 2010; 362:1575-1585, Supplementary Appendix 1

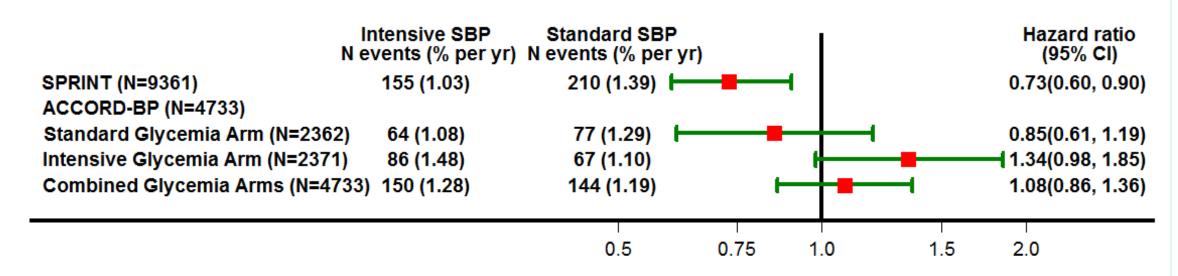
CVD outcome: SPRINT vs ACCORD

Beddhu S et al. J Am Heart Assoc. 2018;7:e009326. DOI: 10.1161/JAHA.118.009326

Forest Plot of HRs of Intensive vs. Standard SBP for CVD Outcome in SPRINT and Two Glycemic Arms in ACCORD BP



Hazard ratio for CVD events (Intensive SBP vs Standard SBP)


Interaction p-values for comparison of the effects of intensive SBP versus standard SBP

SPRINT vs. ACCORD-BP Standard Glycemia Arm	p=0.87	ACCORD-BP Intensive vs. standard Glycemia Arm	p=0.053
SPRINT vs. ACCORD-BP Intensive Glycemia Arm	p=0.023	SPRINT vs. ACCORD-BP Combined Glycemia Arms	p=0.16

All-cause mortality: SPRINT vs ACCORD

Forest Plot of HRs of Intensive vs. Standard SBP for All-Cause Mortality Outcome in SPRINT and Two Glycemic Arms in ACCORD BP

Hazard ratio for all-cause mortality (Intensive SBP vs Standard SBP)

p=0.46

p=0.002

Interaction p-values for comparison of the effects of intensive SBP versus standard SBP

SPRINT vs. ACCORD-BP	Standard Glycemia Arm
SPRINT vs. ACCORD-BP	Intensive Glycemia Arm

ACCORD-BP Intensive vs. standard Glycemia Arm p SPRINT vs. ACCORD-BP Combined Glycemia Arms p

p=0.051 p=0.015

SPRINT vs ACCORD comparison

- Intensive SBP lowering decreased the hazard of the composite CVD end point similarly in SPRINT
 - Hazard ratio: 0.75; 95% confidence interval, 0.64 0.89)

and in the ACCORD BP standard glycemia arm

- Hazard ratio: 0.77; 95% confidence interval, 0.63 0.95; interaction P = 0.87
- Patterns were similar for all-cause mortality.

What Are the Clinical Implications?

 These findings support the current American College of Cardiology and American Heart Association guidelines of a systolic blood pressure goal of <130 mm Hg in patients both with and without type 2 diabetes mellitus.

Development of AKI in SPRINT

Original Investigation

Effects of Intensive Blood Pressure Treatment on Acute

Were all were mild and participants Were all the Wirk AKT in intensive group, but higher rate of AKT intens

mervention Trial (SPRINT).

Setting & Participants: 9,361 participants 50 years or older with 1 or more risk factors for cardiovascular disease.

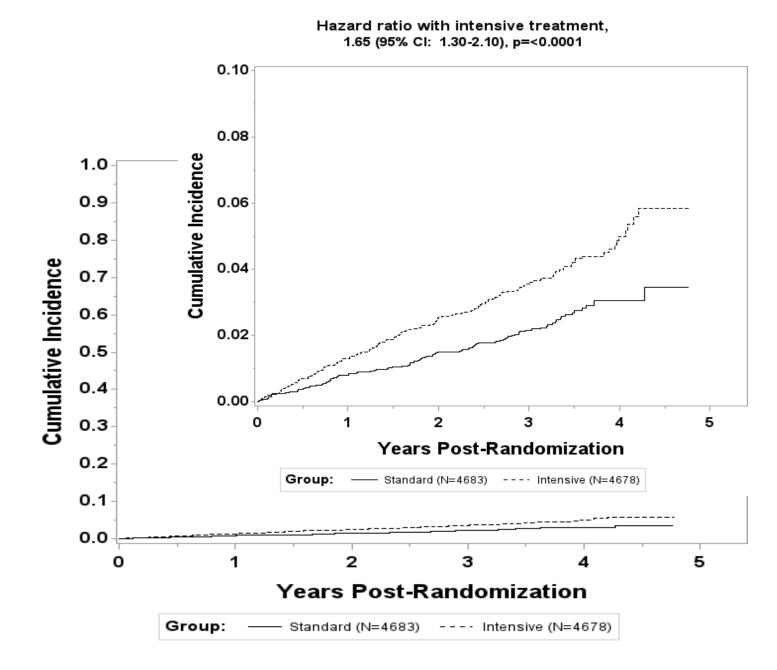
AJKD

Interventions: Participants were randomly

KDIGO stage was 128 (58.5%) versus 81 (62.8%) for AKI stage 1, 42 (19.2%) versus 18 (14.0%) for AKI stage 2, and 42 (19.2%) versus 25 (19.4%) for AKI stage 3 (P=0.5). For participants with sufficient data, complete or partial resolution of AKI was seen for 169 (90.4%) and 9

Am J Kidney Dis. 71(3): 352-361. Published online November 20, 2017.

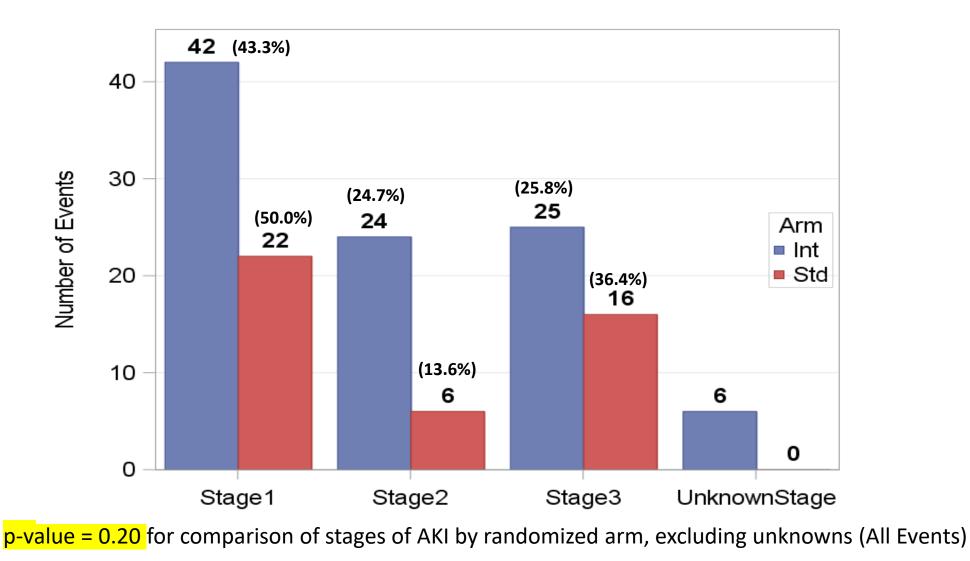
doi: 10.1053/ j.ajkd.2017.08.021

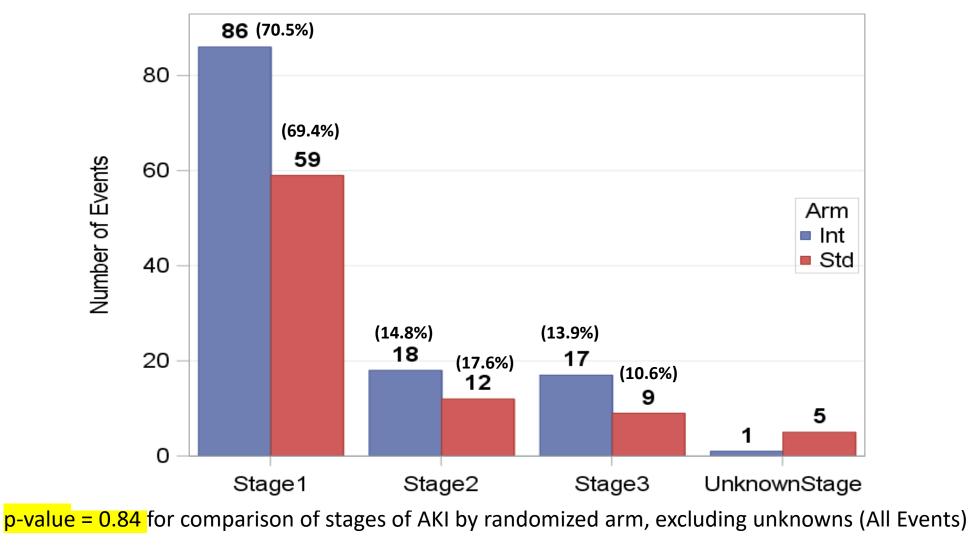

A DOTT LOUIS NOT

Number of SPRINT adjudicated AKI events per participant

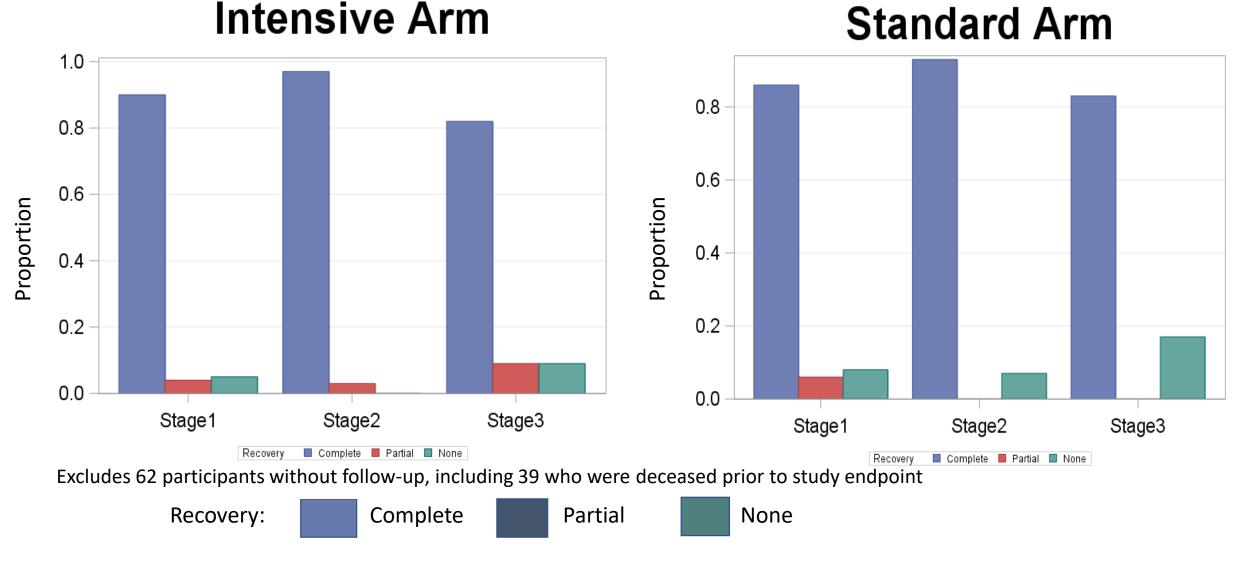
2 10.4% 3 4 6 5 86.1%

Number of Events


The vast majority of participants had only one AKI event during the trial


Hazard ratio for time to first AKI event with intensive treatment

Cox proportional hazards regression, with two-sided tests at the 5% level of significance, with stratification by clinical site. Follow-up time was censored at the time of the final event ascertainment.


Similar severity of AKI in both arms of trial (Non-CKD cohort)

Similar severity of AKI in both arms of trial (CKD cohort)

Most participants recovered renal function after AKI event

Summary

- Most participants had only one AKI event during the trial
- AKI events more common in intensive arm versus standard arm
 - Hazard ratio of 1.65, 95% confidence interval 1.30 2.10
- Most AKI events were KDIGO stage 1 (least severe)
- Similar severity of AKI events in intensive arm versus standard arm
- Complete recovery of AKI was seen in more than 90% of subjects
- Subjects with AKI were more likely to have experienced either the SPRINT primary outcome or death from any cause compared to subjects who did not have an AKI event

Conclusions - 1

- Participants with CKD randomized to the intensive arm, compare to the standard arm had
 - Lower all-cause mortality
 - Trend towards fewer cardiovascular events
 - Tubular biomarker changes suggest that decrease in eGFR was a hemodynamic effect
- Participants greater than 75 years old randomized to the intensive arm compared to the standard arm had:
 - Lower all-cause mortality
 - Fewer cardiovascular events
 - No difference in gait speed
 - Lower rates of mild cognitive impairment
 - Smaller increase in white matter lesions
 - No difference in decrease in total brain volume

Conclusions - 2

- Post-hoc analysis of the ACCORD data demonstrates that
 - Those participants in the standard glycemic arm had similar rates of CV events and all cause mortality as found in the SPRINT study
 - Intensive therapy CV outcomes: 0.77 (95% CI 0.63 0.95) for ACCORD;

0.75 (95% CI: 0.64 - 0.89) for SPRINT

• Intensive therapy all cause mortality: 0.85 (95% CI: 0.61 – 1.19) for ACCORD

0.73 (95% CI: 0.60 – 0.90) for SPRINT

- Acute Kidney injury events
 - Majority of events were mild in nature (KDIGO stage 1)
 - More than 80% of participants in both arms of the study recovered renal function to within 20% of pre-AKI values.

Acknowledgements

- 9,361 volunteers who agreed to participate in SPRINT
- Investigators and staff, including Steering Committee, other principals at the 5 Clinical Center Networks, 102 participating Clinical Centers, Coordinating Center, Central Laboratory, ECG Reading Center, MRI Reading Center, and Drug Distribution Center
- National Institutes of Health
- National Heart, Lung, and Blood Institute (NHLBI)
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- National Institute on Aging (NIA)
- National Institute of Neurological Disorders and Stroke (NINDS)
- SPRINT Data and Safety Monitoring Board (DSMB)
- Takeda and Arbor Pharmaceuticals (donated 5% of medication used)

Studies Comparing Unattended vs Attended Office Blood Pressure Measurements Taken Using Automated Devices

Study	No. of Subjects	Subjects; Visits	BP Measurements; Device Type	Average Attended BP Levels (mm Hg)	Unattended vs Attended BP Difference (mm Hg)
	n=30, attended and	Same subjects; separate visits	3 measurements; Omron HEM-705CP	S: 139.6±16.0	S: -1.9 (-4.2 to 0.4)
	unattended			D: 88.6±8.1	D: -1.6 (-3.3 to 0.2)
Greiver et al [®] (2012)	n=50, attended (open areas) and unattended	Same subjects; same visit	6 measurements (first discarded); BpTRU	S: 121.1±17.9	S: -1.8 (-3.6 to 0.1)
				D: 73.9±10.2	D: -0.8 (-2.5 to 0.8)
	n=162, attended and	Same subjects; same	3 measurements; Omron i-C10	S: 139.1±18.0	S: -1.1 (-2.5 to 0.3)
	unattended	visit		D: 84.8±11.0	D: 1.1 (-0.1 to 2.3)
	n=65, attended (open	Same subjects; same visit	6 measurements (first discarded); BpTRU	S: 126.7±16.1	S: 0.2 (-1.6 to 2.0)
	areas) and unattended			D: 73.4±8.1	D: -0.7 (-1.6 to 0.2)
	n=51, attended and	Same subjects; same visit	3 measurements; Omron HEM-907	S: 135.7±21.5	S: -1.5 (-1.1 to 0.9)
	unattended			D: 80.6±12.0	D: 0.0 (-0.7 to 0.7)
n=1123; una n=203 Standard arm: n=1124; una	Intensive arm: attended n=1123; unattended		3 measurements; Omron HEM-907	S: 139.2±15.8	Intensive arm: S: 0.4 (-0.8 to 1.6)
	n=2037	Different subjects		D: 79.3±12.1	D: -1.4 (-2.3 to -0.5)
	Standard arm: attended n=1124; unattended n=2045			S: 138.8±15.3	Standard arm: S: 1.1 (–0.0 to 2.2)
				D: 78.7±11.6	D: -0.7 (-1.6 to 0.2)

Mean±SD (95% CIs). BP indicates blood pressure; D, diastolic BP; and S, systolic BP.

Stergiou G et al. *Hypertension*. 2018;71:813-815