News items Uniek eiwit vormt zwakke plek malariaparasiet
18 April 2018

The malaria parasite is highly dependent on a unique protein for infecting new mosquitoes. This protein could be a target for the development of new drugs. It was discovered recently by researchers from Radboud university medical center and colleagues from the Humboldt University of Berlin. The results were published in Cell Reports.

Publication in Cell reports: link

Over a thousand people die from malaria every day. The disease is caused by a single-cell parasite (protozoan) that is transmitted by mosquitoes. Anti-malaria efforts currently focus on effective diagnostics, mosquito nets, insecticides and drugs. Additionally, a strong effort is being made at Radboud university medical center and other institutes to develop a vaccine. Effective policy has nearly halved the annual number of malaria deaths in the past ten years, but further decline has stagnated, partly because the malaria parasite is developing resistance to all known drugs.
Taco Kooij, theme Infectious diseases and global health discovered a protein in the mitochondrion of the malaria parasite that could be used as a target for such a new drug. 

Powerhouses of the cell

Almost all cells in the body contain mitochondria: organelles that provide energy to power cellular processes. The single-cell malaria parasite also has a mitochondrion, which is vital to its survival. All mitochondria contain many different proteins, including ‘prohibitin’ proteins. But malaria researcher Kooij and his German colleagues have discovered that the mitochondrion in the parasite, besides the common prohibitins that can also be found in human cells, contains a unique prohibitin that can be found only in this protozoa and related microbes.
 
This protein appears to be crucial for the survival of the parasite. Kooij: "When we switched off the prohibitin in the parasite, we saw that it was no longer able to infect new mosquitoes. The prohibitin-free parasite was already struggling during the liver and blood stages of its life cycle, but the final blow was dealt when it tried to infect another mosquito: it failed to do so. Fertilization between male and female parasites in the mosquito midgut (see paragraph on the malaria cycle) did occur, but shortly afterwards, this new generation died without infecting the mosquito." 

Voltage in the cell

Many mitochondrial functions depend on the voltage differential across the mitochondrial membrane. This membrane potential results from a difference in concentration of positively and negatively charged molecules inside and outside the mitochondrion. "The unique parasite protein fulfills an important role in maintaining the potential. In future research we want to figure out the exact mechanism." A new drug could potentially be developed to disable the unique prohibitin protein. "The main advantage is that this protein is not present in humans, who therefore cannot be harmed if it is disabled”, Kooij explains. 

Malaria cycle

After a human has been bitten by an infected mosquito, the malaria parasite travels to the liver where it multiplies. Five to seven days later, the liver cells burst open and the parasite infects the red blood cells. Only then does the infected person start to show symptoms such as fever and flu-like symptoms, or worse. Some of the parasites circulating in the blood develop into sexually reproductive stages, which can infect other mosquitoes. Fertilization takes place in the mosquito’s midgut. Once infected, those mosquitoes transmit the parasite to another human during a subsequent blood meal. In this way the parasite spreads very efficiently through the population; one person infected with malaria could potentially infect over one hundred others.
 
 

Related news items


ERC Proof of Concept grant received by Ronald van Rij

30 July 2020

Ronald van Rij, theme Infectious diseases and global health, received an ERC (European Research Council) Proof of Concept grant of 150,000 euros, in order to make arbovirus vaccines even safer.

read more

Hypatia fellowship Call is open

30 July 2020

The Hypatia fellowship round with the deadline 31 May has been canceled. Therefore, the next available deadline will be 27 September 2020. Radboudumc researchers are invited to scout young potentials to fill the strategic gaps within the research themes imbedded in RIHS and RIMLS.  

read more

Mihai Netea and colleagues published two papers back-to-back in The Journal of Clinical Investigation. 

29 July 2020

These back-to-back articles investigated the effect of BCG vaccination on trained immunity. The first article shows that BCG vaccination inhibits systemic inflammation, depending on gender. The second article demonstrates that the circadian rhythm influences the induction of trained immunity.

read more

Genetic mutation reveals how coronavirus strikes TLR7 plays essential role in disease process

28 July 2020

''Does a congenital immune defect play an important role in the defense against Coronavirus?'' This was published by Cas van der Made, Frank van der Veerdonk and Alexander Hoischen.

read more

Summer greetings from René Bindels

16 July 2020

In this last newsletter before most colleagues enjoy their well-deserved summer break, I would like to briefly summarize the first part of 2020 and look ahead to the many activities that will take place in the coming months of this unprecedented year.

read more

Registration for Social Dutch course for researchers is open now

14 July 2020

In October, a new course Social Dutch will start at Radboud In’to Languages. The course is very popular and we are happy to inform you that registrations for Social Dutch have been opened now!

read more