News items Uniek eiwit vormt zwakke plek malariaparasiet
18 April 2018

The malaria parasite is highly dependent on a unique protein for infecting new mosquitoes. This protein could be a target for the development of new drugs. It was discovered recently by researchers from Radboud university medical center and colleagues from the Humboldt University of Berlin. The results were published in Cell Reports.

Publication in Cell reports: link

Over a thousand people die from malaria every day. The disease is caused by a single-cell parasite (protozoan) that is transmitted by mosquitoes. Anti-malaria efforts currently focus on effective diagnostics, mosquito nets, insecticides and drugs. Additionally, a strong effort is being made at Radboud university medical center and other institutes to develop a vaccine. Effective policy has nearly halved the annual number of malaria deaths in the past ten years, but further decline has stagnated, partly because the malaria parasite is developing resistance to all known drugs.
Taco Kooij, theme Infectious diseases and global health discovered a protein in the mitochondrion of the malaria parasite that could be used as a target for such a new drug. 

Powerhouses of the cell

Almost all cells in the body contain mitochondria: organelles that provide energy to power cellular processes. The single-cell malaria parasite also has a mitochondrion, which is vital to its survival. All mitochondria contain many different proteins, including ‘prohibitin’ proteins. But malaria researcher Kooij and his German colleagues have discovered that the mitochondrion in the parasite, besides the common prohibitins that can also be found in human cells, contains a unique prohibitin that can be found only in this protozoa and related microbes.
 
This protein appears to be crucial for the survival of the parasite. Kooij: "When we switched off the prohibitin in the parasite, we saw that it was no longer able to infect new mosquitoes. The prohibitin-free parasite was already struggling during the liver and blood stages of its life cycle, but the final blow was dealt when it tried to infect another mosquito: it failed to do so. Fertilization between male and female parasites in the mosquito midgut (see paragraph on the malaria cycle) did occur, but shortly afterwards, this new generation died without infecting the mosquito." 

Voltage in the cell

Many mitochondrial functions depend on the voltage differential across the mitochondrial membrane. This membrane potential results from a difference in concentration of positively and negatively charged molecules inside and outside the mitochondrion. "The unique parasite protein fulfills an important role in maintaining the potential. In future research we want to figure out the exact mechanism." A new drug could potentially be developed to disable the unique prohibitin protein. "The main advantage is that this protein is not present in humans, who therefore cannot be harmed if it is disabled”, Kooij explains. 

Malaria cycle

After a human has been bitten by an infected mosquito, the malaria parasite travels to the liver where it multiplies. Five to seven days later, the liver cells burst open and the parasite infects the red blood cells. Only then does the infected person start to show symptoms such as fever and flu-like symptoms, or worse. Some of the parasites circulating in the blood develop into sexually reproductive stages, which can infect other mosquitoes. Fertilization takes place in the mosquito’s midgut. Once infected, those mosquitoes transmit the parasite to another human during a subsequent blood meal. In this way the parasite spreads very efficiently through the population; one person infected with malaria could potentially infect over one hundred others.
 
 

More information


Anne van Kessel

information officer

(024) 30 92373

Related news items


Lowering cholesterol is not enough to reduce hyperactivity of the immune system

14 June 2019

In Cell Metabolism, Siroon Bekkering, theme Vascular damage, and colleagues, provides a novel potential explanation for the residual cardiovascular risk, related to persistent activation of the immune system in patients with hypercholesterolemia who are treated with statins.

read more

A warm welcome for the new forces at RIMLS

13 June 2019

RIMLS is now on full strength by welcoming new colleagues. Let us introduce them to you and find out what they can do for you.

read more

New cause for vaginal yeast infections discovered

13 June 2019

Martin Jaeger, theme Infectious diseases and global health, and colleagues, identified SIGLEC15 as a susceptibility factor in recurrent vulvovaginal candidiasis. Their findings were published in Science Translational Medicine.

read more

Internal KWF review procedure 2020

13 June 2019

In agreement with the existing policy the research board and Radboud Center for Oncology have decided to continue with the mandatory internal review procedure for KWF grant applications.

read more

A personal touch of Johan van der Vlag

13 June 2019

In order to promote interaction amongst colleagues within RIMLS, we have a ‘personal touch’ series setting employees in the spotlight. A light-hearted manner to learn about the colleagues you know and those you don’t. This week: Johan van der Vlag.

read more

Peter van der Kraan new theme leader Inflammatory diseases

13 June 2019

It is our pleasure to introduce Peter van der Kraan from the Dept. of Rheumatology, as the new leader of our theme Inflammatory diseases. As such he will be the successor of Irma Joosten who has done an outstanding job in the last years as theme leader, for which we thank her wholeheartedly.

read more