19 June 2017

Radboud University Medical Center, the Instituto de Medicina Molecular, and PATH’s Malaria Vaccine Initiative will collaborate on first-in-human study of a novel malaria vaccine approach. This early-stage study will test a new vaccine concept using a genetically modified parasite to induce protection.

The concept being tested is similar to that used by Edward Jenner to develop a vaccine against smallpox, the only disease affecting humans that has ever been eradicated. Jenner used cowpox—a similar but much less dangerous bovine version of the disease—to inoculate people against smallpox. In this clinical trial, based on data from earlier animal studies conducted by iMM Lisboa, the researchers will use a rodent version of the malaria-causing parasite (known as Plasmodium berghei) to determine if it can induce protection against infection by Plasmodium falciparum, the deadliest version of theparasite that infects humans.

In the study, a specific gene from P. falciparum known as the circumsporozoite protein (CS), will be inserted into the rodent parasite, resulting in a genetically modified version known as Pb(PfCS@UIS4). By inserting the gene for CS, the researchers hope to improve the potential of the modified rodent parasite to induce a protective response in healthy human volunteers.

“Bringing together the concept underlying the first vaccine ever developed, when Edward Jenner used the cowpox virus to immunize people against smallpox, with modern genetic manipulation tools, has resulted in a truly innovative approach to malaria vaccination,” said Miguel Prudêncio, who is leading the research team at iMM Lisboa.

The trial will be conducted in two phases at Radboudumc. In the first phase, 18 healthy adult volunteers will be recruited into three groups and exposed to varying, but carefully controlled number of bites from mosquitoes infected with the genetically modified P. berghei parasite. The researchers will closely monitor volunteers for signs of infection to make sure they are treated if they become ill. If all goes well in the Phase 1 study, volunteers from the highest dose group will enter the second phase of the study which is designed to assess protective efficacy of the approach.

“This is the first time we have tested a genetically modified malaria vaccine approach in Europe using this rodent parasite,” said Robert Sauerwein, theme Infectious diseases and global health. “Along with our partners in the Netherlands, the Havenziekenhuis and Erasmus MC, we’re looking forward to investigating whether this novel concept might one day contribute to the elimination and eradication of this terrible disease.”

Malaria is a disease that killed more than 429,000 people in 2015, most of them young African children. Although the most advanced vaccine in development globally is slated for pilot implementation in parts of Africa beginning in 2018—an incredible accomplishment and critically important step—researchers are still on the hunt for a malaria vaccine that can confer higher levels of durable efficacy. The long-term goal of the malaria vaccine community, as outlined in the World Health Organization’s Malaria Vaccine Technology Roadmap, is to develop vaccines with protective efficacy of at least 75 percent against clinical malaria, and vaccines that reduce transmission of the parasite in order to lower the incidence of malaria infection.                                                                               
“Although much progress has been made to drive down the malaria burden with currently-available interventions, a highly effective vaccine would be an important new tool for malaria elimination,” said Ashley Birkett, director of PATH’s Malaria Vaccine Initiative (MVI). “We are pleased to collaborate with Radboudumc and iMM Lisboa on testing this novel approach.”

With nearly two decades of experience in developing, managing, and overseeing human malaria challenge studies for vaccines against P. falciparum and P. vivax malaria, MVI, part of PATH’s Center for Vaccine Innovation and Access, will provide financial support for the project, input into trial design, and oversight for the clinical studies. MVI also supported previous toxicology studies. Radboudumc, a leader in controlled human malaria infection with P. falciparum, will lead, implement, and conduct the study in the Netherlands. iMM Lisboa, a nonprofit research institute devoted to biomedical research, will collaborate with Radboudumc on the conduct of the clinical trial and will provide the vaccine candidate, Pb(PfCS@UIS4), for use.

Related news items


David Burger top scientist on anti-HIV medication

6 December 2021

Professor of Clinical Pharmacy David Burger, affiliated with the Radboudumc Pharmacy, is in the list of top scientists in the field of anti-HIV medication.

read more

How much should we exercise to live healthier lives? Research into the relationship between exercise, heart disease and mortality

3 December 2021

It has long been known that exercise reduces the risk of many chronic diseases. However, we do not yet know exactly how much exercise is necessary to achieve health benefit.

read more

KNAW Early Career Award for Martine Hoogman

2 December 2021

Martine Hoogman has been awarded a KNAW Early Career Award. The prize, a sum of 15,000 euros and a work of art, is aimed at researchers in the Netherlands who are at the start of their careers and have innovative, original research ideas.

read more

T-Guard can reset immune system

1 December 2021

For 20 years, the Nijmegen based Radboudumc spin-off company Xenikos has been working on a drug that can reset the immune system. This reset will save lives of seriously ill patients. Now, after years of hard work, the moment of truth has arrived for T-guard.

read more

Thomas van den Heuvel wins Stairway to Impact Award for safer pregnancies using AI Award for safer pregnancies using AI

1 December 2021

Radboudumc researcher Thomas van den Heuvel receives the Stairway to Impact Award from Dutch Research Council NWO. He receives this prize for the development of the BabyChecker, a smartphone application that allows midwives to make ultrasounds during pregnancies.

read more

Villa Joep Research Grant for Radiotherapy & OncoImmunology (ROI) lab

1 December 2021

Renske van den Bijgaart and Gosse Adema from the Radiotherapy & OncoImmunology laboratorium in collaboration with the Prinses Maxima Center received a grant from Villa Joep of 410k Euro.

read more