26 June 2018

Coen Bongers, Thijs Eijsvogels, Maria Hopman and colleagues published an article in Physiological Reports on the effects of acute versus prolonged exercise and dehydration on kidney function and kidney damage in healthy young adults.


abstract

Exercise and dehydration may be associated with a compromised kidney function and potential signs of kidney injury. However, the kidney responses to exercise of different durations and hypohydration levels are not yet known. Therefore, we aimed to compare the effects of acute versus prolonged exercise and dehydration on estimated glomerular filtration rate (eGFR) and kidney injury biomarkers in healthy male adults. A total of 35 subjects (23 ± 3 years) were included and invited for two study visits. Visit 1 consisted of a maximal cycling test. On Visit 2, subjects performed a submaximal exercise test at 80% of maximal heart rate until 3% hypohydration. Blood and urine samples were taken at baseline, after 30 min of exercise (acute effects; low level of hypohydration) and after 150 min of exercise or when 3% hypohydration was achieved (prolonged effects, high level of hypohydration). Urinary outcome parameters were corrected for urinary cystatin C, creatinine, and osmolality. Subjects dehydrated on average 0.6 ± 0.3% and 2.9 ± 0.7% after acute and prolonged exercise, respectively (P < 0.001). The eGFRcystatin C did not differ between baseline and acute exercise (118 ± 11 vs. 116 ± 12 mL/min/1.73 m2 , P = 0.12), whereas eGFRcystatin Cwas significantly lower after prolonged exercise (103 ± 16 mL/min/1.73 m2 , P < 0.001). We found no difference in osmolality corrected uKIM1 concentrations after acute and prolonged exercise (P > 0.05), and elevated osmolality corrected uNGAL concentrations after acute and prolonged exercise (all P-values < 0.05). In conclusion, acute exercise did barely impact on eGFRcystatin C and kidney injury biomarkers, whereas prolonged exercise is associated with a decline in eGFRcystatin C and increased biomarkers for kidney injury.

publication

Impact of acute versus prolonged exercise and dehydration on kidney function and injury.
Bongers CCWG, Alsady M, Nijenhuis T, Tulp ADM, Eijsvogels TMH, Deen PMT, Hopman MTE.

Coen Bongers and Thijs Eijsvogels are both members of theme Vascular damage. Maria Hopman is member of theme Mitochondrial diseases.

Related news items


Working energetically from home

3 December 2020

By now, you may have gotten used to it: working from home. The page ‘Working energetically from home‘ offers you tips to help you work from home better, from setting up a good workspace to working more effectively and maintaining a good work-life balance.

read more

Employees Personal Touch Pieter Leermakers

29 November 2020

In the monthly 'Employee's personal touch' an employee answers a few questions about the work, all with a personal touch. Now Pieter Leermakers tells us her story.

read more

PhD degree for Aernout Snoek

27 November 2020

Aernout Snoek obtained his PhD degree in the Medical Science of the Radboud University

read more

Radboudumc research most lungs recover well after COVID-19

26 November 2020

In severe COVID-19 patients the lung tissue recovers well in most cases. This is shown in research by the Radboudumc, published in Clinical Infectious Diseases. Striking conclusion: patients who were referred by the general practitioner recover worse than ICU patients.

read more

Marianne Boenink has been appointed professor in Ethics of Healthcare

26 November 2020

Health scientist and philosopher Marianne Boenink has been appointed professor in Ethics of Healthcare at the Radboud University/ Radboudumc, as of 1 August 2020.

read more

Patrick Jeurissen member Scientific Advisory Board for European Commission on health care policy in pandemics

26 November 2020

Patrick Jeurissen, Professor of Affordability of Care, has been appointed as a member of the Scientific Advisory Board for the Pan-European Commission on Health and Sustainable Development. This committee will study healthcare policy in the light of pandemics in the coming year.

read more