7 March 2019

In an article appearing in the journal of the National Cancer Institute, Ioannis Sechopoulos and colleagues showed that current artificial intelligence systems can detect breast cancer in mammograms as well as a breast radiologists.

Abstract

Background
Artificial intelligence (AI) systems performing at radiologist-like levels in the evaluation of digital mammography (DM) would improve breast cancer screening accuracy and efficiency. We aimed to compare the stand-alone performance of an AI system to that of radiologists in detecting breast cancer in DM.

Methods
Nine multi-reader multi-case study datasets previously used for different research purposes in seven countries were collected. Each dataset consisted of DM exams acquired with systems from four different vendors, multiple radiologists’ assessments per exam, and ground truth verified by histopathological analysis or follow-up, yielding a total of 2,652 exams (653 malignant) and interpretations by 101 radiologists (28,296 independent interpretations). An AI system analyzed these exams yielding a level of suspicion of cancer present between 1 and 10. The detection performance between the radiologists and the AI system was compared using a non-inferiority null hypothesis at a margin of 0.05.

Results
The performance of the AI system was statistically non-inferior to that of the average of the 101 radiologists. The AI system had a 0.840 (95% CI = 0.820-0.860) [ARR1] area under the ROC curve (AUC) while the average of the radiologists was 0.814 (95% CI = 0.787-0.841) (difference 95% CI = (-0.003-0.055))[ISS2] . The AI system had an AUC higher than 61.4% of the radiologists.

Conclusions  
The evaluated AI system achieved a cancer detection accuracy comparable to an average breast radiologist in this retrospective setting. While promising, the performance and impact of such a system in a screening setting needs further investigation.

Publication

Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists.
Rodriguez-Ruiz A, Lång K, Gubern-Merida A, Broeders M, Gennaro G, Clauser P, Helbich TH, Chevalier M, Tan T, Mertelmeier T, Wallis MG, Andersson I, Zackrisson S, Mann RM, Sechopoulos I.

Ioannis Sechopoulos is member of theme Women's cancers.

Related news items


Exercise prevents new cardiovascular diseases

4 March 2021

Exercise lowers the risk of glucose intolerance, obesity, elevated cholesterol and hypertension. The risk of new cardiovascular diseases can be lowered by an individual exercise guideline, argues epidemiologist Esmée Bakker in her dissertation on March 4.

read more

How do anxious people deal with coronavirus?

4 March 2021

There is a lot to say about our emotional well-being during the COVID-19 pandemic. Anne-Kathrin Brehl, a researcher at Radboudumc, investigated whether anxious people experienced more or less symptoms during the lockdown.

read more

Dirk Lefeber receives Vici grant

4 March 2021

Dirk Lefeber, Professor, theme Disorders of movement, receives a Vici grant worth 1.5 million euros. He will use this grant to investigate why sugar metabolism differs between organs by use of stem cell models of muscle and brain.

read more

Arterial wall inflammation and increased hematopoietic activity in patients with primary aldosteronism

4 March 2021

Niels Riksen and colleagues identified increased inflammatory activity in patients with primary aldosteronism.

read more

RIHS Awards ceremony Six winners

4 March 2021

On 2 March, the RIHS Awards 2020 ceremony took place online. In front of an audience of more than 150 colleagues, RIHS awardees accepted their awards. New this year was the Patient Involvement Award for those who actively involved patients in their studies. Curious who they are? Read it now!

read more

Dirk Lefeber receives NWO Vici grant for research on sugar metabolism

4 March 2021

Amount of 1.5 million euros for Professor of Glycosylation Disorders in Neurology

read more