5 September 2019

In Plos One, Florieke Eggermont, Esther Tanck and colleagues developed a calibration method, which makes clinical implementation of CT-based finite element models as tool for fracture risk assessment easier.
 
Abstract
The objective of this study was to develop a new calibration method that enables calibration of Hounsfield units (HU) to bone mineral densities (BMD) without the use of a calibration phantom for fracture risk prediction of femurs with metastases using CT-based finite element (FE) models. Fifty-seven advanced cancer patients (67 femurs with bone metastases) were CT scanned atop a separate calibration phantom using a standardized protocol. Non-linear isotropic FE models were constructed based on the phantom calibration and on two phantomless calibration methods: the "air-fat-muscle" and "non-patient-specific" calibration. For air-fat-muscle calibration, peaks for air, fat and muscle tissue were extracted from a histogram of the HU in a standardized region of interest including the patient's right leg and surrounding air. These CT peaks were linearly fitted to reference "BMD" values of the corresponding tissues to obtain a calibration function. For non-patient-specific calibration, an average phantom calibration function was used for all patients. FE failure loads were compared between phantom and phantomless calibrations. There were no differences in failure loads between phantom and air-fat-muscle calibration (p = 0.8), whereas there was a significant difference between phantom and non-patient-specific calibration (p<0.001). Although this study was not designed to investigate this, in four patients who were scanned using an aberrant reconstruction kernel, the effect of the different kernel seemed to be smaller for the air-fat-muscle calibration compared to the non-patient-specific calibration. With the air-fat-muscle calibration, clinical implementation of the FE model as tool for fracture risk assessment will be easier from a practical and financial viewpoint, since FE models can be made using everyday clinical CT scans without the need of concurrent scanning of calibration phantoms.

Publication
Calibration with or without phantom for fracture risk prediction in cancer patients with femoral bone metastases using CT-based finite element models.
Eggermont F, Verdonschot N, van der Linden Y, Tanck E.

Florieke Eggermont and Esther Tanck are members of theme Reconstructive and regeneratice medicine.

Related news items


The Postdoctoral Networking Tour in artificial intelligence

2 July 2020

You are a postdoctoral researcher in the field of artificial intelligence? The Postdoc-NeT-AI offers you the opportunity to participate in one week of on-site visits to leading German universities, research institutes and companies. Apply now to this year's tour until 16 August 2020.

read more

Register for Phd courses via gROW What does this mean for you?

2 July 2020

From now on you can arrange everything related to the general RU PhD courses via gROW. Because of this there will be some changes in the registration! What does this mean for you?

read more

Experts on metabolic diseases still an unknown major problem...

1 July 2020

Six Dutch UMCs and a patient association contribute to treating and solving this major, often unknown, problem. Timely detection of metabolic diseases is vital. Therefore, Radboudumc is also part of the consortium “United for Metabolic Diseases”.

read more

Radboud Pluim for Lionne Ekers ambassador for the RIMLS institute

30 June 2020

Lionne Ekers received the Radboudpluim for her special merits for the Radboudumc. She is a born ambassador for our Institute.

read more

Stefan Listl member Lancet Commission on Oral Health

29 June 2020

In recognition of the global public health importance, woeful neglect of oral diseases, and the need for a broader understanding and commitment to global oral health within medicine and global health agendas, The Lancet recently established a Commission on Oral Health.

read more

Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection

29 June 2020

In a review in Cell Mihai Netea, Frank van de Veerdonk, Reinout van Crevel and Jorge Dominguez Andres propose that induction of trained immunity by whole-microorganism vaccines may represent an important tool for reducing susceptibility to and severity of SARS-CoV-2.

read more