21 January 2019

Martijn Huijnen, theme Mitochondrial diseases, and colleagues developed COmplexome Profiling ALignment (COPAL) to systematically asses the effect of Barth syndome on mitochondrial protein complexes.

They published their findings in Bioinformatics.

Complexome profiling combines native gel electrophoresis with mass spectrometry to obtain the inventory, composition and abundance of multiprotein assemblies in an organelle. Applying complexome profiling to determine the effect of a mutation on protein complexes requires separating technical and biological variations from the variations caused by that mutation.

They have developed the COmplexome Profiling ALignment (COPAL) tool that aligns multiple complexome profiles with each other. It includes the abundance profiles of all proteins on two gels, using a multidimensional implementation of the dynamic time warping algorithm to align the gels. Subsequent progressive alignment allows them to align multiple profiles with each other. They tested COPAL on complexome profiles from control mitochondria and from Barth syndrome (BTHS) mitochondria, which have a mutation in tafazzin gene that is involved in remodelling the inner mitochondrial membrane phospholipid cardiolipin. By comparing the variation between BTHS mitochondria and controls with the variation among either, they assessed the effects of BTHS on the abundance profiles of individual proteins. Combining those profiles with gene set enrichment analysis allows detecting significantly affected protein complexes. Most of the significantly affected protein complexes are located in the inner mitochondrial membrane (MICOS, prohibitins), or are attached to it (the large ribosomal subunit).

Related news items


RIMLS award ceremony proudly presenting the winners

16 January 2020

Several RIMLS researchers received an award and bonus during the New Year's drinks. See all photo's and the ENABLE aftermovie.

read more

Stofwisselkracht grant for Daan Panneman and Richard Rodenburg

16 January 2020

Daan Panneman & Richard Rodenburg have been awarded a Stofwisselkracht grant for their proposal “CRISPR/Cas9 knock-in complementation in fibroblasts of mitochondrial disease patients”. Together with Omar Tutakhel & Jan Smeitink they will investigate the possibility of using CRISPR/Cas9 knock-in.

read more

Radboud Talks 2020 scientific pitch competition

14 January 2020

The next edition of Radboud Talks will take place in the spring. During this academic pitch competition, young researchers will be given the opportunity to share their stories with a large audience. In a three-minute presentation, you will talk about your research in a fun and accessible manner.

read more

Rubicon Grant for Sami Mohammed

14 January 2020

Former RIMLS researcher Sami Mohammed, theme Renal disorders, received a Rubicon Grant from the Dutch Organisation for Scientific Research (NWO). The Rubicon program gives young, highly promising researchers the opportunity to gain international research experience.

read more

Review Sanne Frambach accepted by Pharmacological Reviews

13 January 2020

In this review entitled 'Brothers in arms: ABCA1 and ABCG1-mediated cholesterol efflux as promising targets in cardiovascular disease treatment', RIMLS researcher Sanne Frambach, describe the possibilities for stimulating cellular efflux.

read more

p120-catenin-dependent collective brain infiltration by glioma cell networks

7 January 2020

Pavlo Gritsenko and Peter Friedl, theme Cancer development and immune defense, report in Nature Cell Biology, that glioma cells infiltrate the brain by a collective network mechanism, which critically depends on p120 catenin. p120 thus represents a potential target to combat glioma.

read more