28 August 2018

In the Journal of Orthopaedic Research, Karlijn Groenen, Dennis Janssen and colleagues reported on their subject-specific non-linear finite element models for predicting vertebral collapse of the metastatically affected spine.

Abstract
Current finite element (FE) models predicting failure behavior comprise single vertebrae, thereby neglecting the role of the posterior elements and intervertebral discs. Therefore, this study aimed to develop a more clinically relevant, case-specific non-linear FE model of two functional spinal units able to predict failure behavior in terms of (i) the vertebra predicted to fail; (ii) deformation of the specimens; (iii) stiffness; and (iv) load to failure. For this purpose, we also studied the effect of different bone density-mechanical properties relationships (material models) on the prediction of failure behavior. Twelve two functional spinal units (T6-T8, T9-T11, T12-L2, and L3-L5) with and without artificial metastases were destructively tested in axial compression. These experiments were simulated using CT-based case-specific non-linear FE models. Bone mechanical properties were assigned using four commonly used material models. In 10 of the 11 specimens our FE model was able to correctly indicate which vertebrae failed during the experiments. However, predictions of the three-dimensional deformations of the specimens were less promising. Whereas stiffness of the whole construct could be strongly predicted (R2  = 0.637-0.688, p < 0.01), we obtained weak correlations between FE predicted and experimentally determined load to failure, as defined by the total reaction force exhibiting a drop in force (R2  = 0.219-0.247, p > 0.05). Additionally, we found that the correlation between predicted and experimental fracture loads did not strongly depend on the material model implemented, but the stiffness predictions did. In conclusion, this work showed that, in its current state, our FE models may be used to identify the weakest vertebra, but that substantial improvements are required in order to quantify in vivo failure loads.

Publication
Case-specific non-linear finite element models to predict failure behavior in two functional spinal units
Groenen KHJ, Bitter T, van Veluwen TCG, van der Linden YM, Verdonschot N, Tanck E, Janssen D.

Karlijn Groenen and Dennis Janssen are both members of theme Reconstructive and regenerative medicine.

Related news items


Radboud Young Academy safeguards the future of science

21 January 2021

New platform to provide advice on policy, create an interdisciplinary network of early career scientists, and promote career development.

read more

Increase radio- and immunotherapy efficacy by targeting hypoxia

21 January 2021

In a paper recently accepted by Clinical Cancer Research, Daan Boreel, together with Paul Span, Sandra Heskamp, Gosse Adema and Jan Bussink, reviews the therapeutic potential of decreasing the lack of oxygen (hypoxia) often found in solid tumors.

read more

Radiation boost lowers risk of prostate cancer recurrence

21 January 2021

An additional external-beam radiation dose delivered directly to the tumor can benefit the prospects of men with non-metastatic prostate cancer, without causing additional side effects. The risk of relapse within five years for these men is smaller than for men who did not receive this boost.

read more

New research through grants for Radboudumc researchers

14 January 2021

Several researchers at the Radboudumc have received grants to start new studies, including on rare diseases, liver disease and cancer metastases. These are grants from the Dutch Research Council, European Joint Programme on Rare Diseases and the Gastric Liver Disease Foundation.

read more

Should we prepare for a corona-related depression wave? Indira Tendolkar and Eric Ruhé talk about their research projects

13 January 2021

Since the outbreak of the SARS-CoV-2, many of us have been staying at home in order to limit our social interactions, to keep ourselves and others safe from the virus. Yet, there’s also concern about what social distancing and anxiety generated by media reports are doing to people's mental health.

read more

RIMLS online award ceremony proudly presenting the winners

13 January 2021

In this special webinar of the RIMLS New Year Celebration, scientific director René Bindels reviewed 2020 and looked forward to 2021. But more importantly a number of researchers received prizes in the traditional RIMLS awards ceremony. 

read more