12 February 2018

Some people develop an immune response following a malaria infection that stops them from infecting other mosquitos. The antibodies that these people produce are sucked up by the mosquito and destroy the malaria parasite in the mosquito’s stomach.

Teun Bousema, theme Infectious diseases and global health, and his colleagues discovered that 1 in 25 malaria patients prevent the disease from spreading in this way. They also unraveled the defense proteins responsible, and these could be used to make a vaccine. The results were published in Nature Communications on February 8th.
 
Malaria is a disease that spreads incredibly efficiently. The antimalarial medicines that are currently used cannot do much to stop this, because the parasites remain in the patient’s blood for a long time after treatment. This means that other mosquitos can be infected with the parasite if they bite the patient. The male and female parasites are fertilized in the mosquito’s stomach, the offspring are transferred back to humans when they are bitten by a mosquito, and the cycle starts again. In this way, just one malaria patient can cause more than 100 new malaria infections. In the fight against malaria, it is therefore very important to make sure that people are not able to infect other mosquitos.
 
Altruistic immunity
People who have been infected with malaria produce antibodies. These antibodies can provide protection from further infection, but they can also prevent the spread of malaria as the antibodies destroy the parasites in the mosquito’s stomach, or prevent fertilization. In that case, it is not the patient who benefits from the antibodies that he or she produces, but other people who are bitten by the mosquito. This is therefore an interesting form of altruistic immunity.
 
Malaria researcher Teun Bousema at Radboud university medical center and his colleagues at London School of Hygiene & Tropical Medicine (LSHTM), have discovered that 1 in 25 malaria patients are able to stop malaria spreading in this way. Amongst missionaries who had been infected with malaria dozens of times during their missionary work, immunity was even more common. Bousema: “This is the first time that we have been able to produce direct evidence that human antibodies against malaria parasite proteins are able to prevent the spread of malaria.”
 
Vaccine to halt spread
Research into whether people can stop the spread of malaria is incredibly labor-intensive. For each patient, dozens of mosquitos need to be investigated to see whether they have been infected after sucking up the blood of the malaria patient. Until recently, all these mosquitos needed to be dissected. Luckily, however, this problem has now been solved. Bousema: “We have developed a malaria parasite that expresses a firefly gene, allowing us to see just by looking at the mosquito whether or not it has been infected.” This has sped up the research considerably.
 
PhD student Will Stone studied people’s immune response to over 300 malaria proteins.  Stone: “We saw that our test subjects produced antibodies that are able to slow the spread of malaria in response to 45 of these proteins. People with these antibodies were ten times less likely to infect mosquitos.” Stone will defend his thesis about this research on February 22nd at Radboudumc and will continue his research at LSHTM. Bousema: “This research enables us to better understand which patients prevent the spread of malaria. We are now looking at whether it is possible to develop a malaria vaccine using some of these proteins. A vaccine that prevents the spread of malaria would help reduce the disease burden of malaria worldwide.”

Publication:
Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity
Stone WJR, Campo JJ, Ouédraogo AL, Meerstein-Kessel L, Morlais I, Da D, Cohuet A, Nsango S, Sutherland CJ, van de Vegte-Bolmer M, Siebelink-Stoter R, van Gemert GJ, Graumans W, Lanke K, Shandling AD, Pablo JV, Teng AA, Jones S, de Jong RM, Fabra-García A, Bradley J, Roeffen W, Lasonder E, Gremo G, Schwarzer E, Janse CJ, Singh SK, Theisen M, Felgner P, Marti M, Drakeley C, Sauerwein R, Bousema T, Jore MM.
Nat Commun. 2018 Feb 8;9(1):558.


Teun Bousema
 

Related news items


BCG vaccine is safe with no increased risk of COVID-19 symptoms says Mihai Netea

11 August 2020

The BCG vaccine has a general stimulatory effect on the immune system and is therefore effective against multiple infectious diseases - possibly also against COVID-19.

read more

650,000 Euro funding for research into the phasing out of medication for leukaemia patients

30 July 2020

With a 650,000 euro funding from ZonMw, researchers from the Haematology and Pharmacy departments can develop a medication phasing out strategy for patients with chronic myeloid leukaemia. This strategy will be tested in practice.

read more

Increased role of patients after bowel cancer treatment

30 July 2020

Approximately 14,000 patients get colorectal cancer every year. Almost all patients are operated on and monitored afterwards (follow-up). In 2019 Radboudumc started a new approach to follow-up research after the treatment of stage II/III colorectal cancer.

read more

ERC Proof of Concept grant received by Ronald van Rij

30 July 2020

Ronald van Rij, theme Infectious diseases and global health, received an ERC (European Research Council) Proof of Concept grant of 150,000 euros, in order to make arbovirus vaccines even safer.

read more

Hypatia fellowship Call is open

30 July 2020

The Hypatia fellowship round with the deadline 31 May has been canceled. Therefore, the next available deadline will be 27 September 2020. Radboudumc researchers are invited to scout young potentials to fill the strategic gaps within the research themes imbedded in RIHS and RIMLS.  

read more

Mihai Netea and colleagues published two papers back-to-back in The Journal of Clinical Investigation. 

29 July 2020

These back-to-back articles investigated the effect of BCG vaccination on trained immunity. The first article shows that BCG vaccination inhibits systemic inflammation, depending on gender. The second article demonstrates that the circadian rhythm influences the induction of trained immunity.

read more