Understanding cardiac stress and remodeling

Emerging evidence suggests that high volumes of lifelong high-intensity exercise training may not be as good for cardiovascular health as previously thought. We aim to unravel:
  • The prevalence, predictors and clinical meaning of exercise-induced cardiac biomarker release.
  • The underlying mechanisms and clinical relevance of accelerated coronary artery calcification among highly active amateur athletes.
  • The impact of myocardial fibrosis on cardiac function and associated clinical outcomes.
  • The prevalence of sudden death among athletes.
  • The effects of an active lifestyle on longevity.
Research Research groups Exercise physiology

About this research group

Thijs Eijsvogels’ research group studies the acute and long-term effects of exercise on health. Current projects involve cardiac imaging following lifelong exercise training, optimizing cardiac rehab, assessing thermoregulatory responses in elite athletes and development of cooling strategies.

Research group leader

dr. Thijs Eijsvogels

contact form


Our group has several aims.
  • We aim to develop and evaluate interventions that stimulate to sit less and move more in daily life.

    read more

    Changing a sedentary lifestyle

    A sedentary lifestyle is characterized by prolonged periods of uninterrupted sitting. There is increasing evidence that sitting time is strongly associated with an increased risk for cardio-metabolic diseases and mortality, independent from the volume of physical activity that is being performed. Hence, we aim to:
    • Develop an intervention to reduce sitting time in daily life.
    • Adopt the intervention to the specific needs of the patient population.
    • Integrate the intervention in standard clinical care.
    • Evaluate the effect of the intervention on disease progression and clinical outcomes.

  • Exercise is medicine

    Exercise is a powerful strategy to reduce the risk for cardiovascular morbidity and mortality, and current guidelines recommend adults to perform at least 150 min/week of physical activity. We aim to identify:
    • The minimal exercise dose which needed to induce any health benefits.
    • The optimal exercise dose providing maximal health benefits.
    • A potential upper threshold beyond which health benefits attenuate with increasing exercise volumes. 

  • Exercise performance in the heat

    Performing exercise in hot and humid ambient conditions is known to induce hyperthermia, potentially leading to performance loss and/or the development of heat related illnesses. For this purpose we aim to:
    • Identify personal and exercise related factors contributing to the development of exertional hyperthermia.
    • Develop and validate novel measurement techniques to measure core body temperature non-invasively.
    • Establish an athlete’s temperature profile to allow personalized interventions for reducing heat stress.
    • Optimize cooling strategies prior to (pre-cooling) and during (per-cooling) exercise.
    • Optimize acclimation and re-acclimation strategies.
    • Collect data in field based settings during extreme exercise events.


Some discoveries of our group.
  • We recently showed that high-volume high-intensity endurance exercise is related to several things.

    read more

    Adverse cardiac remodeling

    We recently showed that high-volume high-intensity endurance exercise is related to accelerated coronary artery calcifications, a higher prevalence of myocardial fibrosis, troponin elevations in every athlete, and higher concentrations of dicarbonyl stress markers.

    An overview of the of the potential deleterious effects of acute and chronic endurance exercise can be read here.

  • Cooling strategies for athletes

    We found that exercise-induced exertional hyperthermia is a common phenomenon among athletes with 15% of runners participating in a 15 km road race demonstrating a core body temperature ≥40°C. Cooling before (pre-cooling) and during (per-cooling) exercise can attenuate the increase in core body temperature, whereas we showed that pre- and per-cooling interventions can boost exercise performance in the heat with +5.7% and +9.9%, respectively.
    An overview of the effectiveness, physiological mechanisms, and practical considerations of cooling interventions can be read here.

  • Exercise is medicine

    We demonstrated that low volumes of exercise (i.e. 15 min/day) yield already large health benefits. Larger volumes induce greater risk reductions with maximal protection at an exercise volume equaling 3 to 4 times the recommended dose. Importantly, vigorous-intensity activities yields maximal risk reduction at a substantially lower dose compared to moderate-intensity activities.
    An overview of the dose-response association between physical activity volumes and health outcomes can be read here.

Useful links connected to this group