20 November 2019

Koen van den Dries and Alessandra Cambi, Dept. of Cell Biology, theme Nanomedicine, revealed how the nanoscale architecture of podosomes enables dendritic cells to protrude and sense their extracellular environment. They have published their results in Nature Communications.

On the photo: From left to right: Koen van den Dries, Alessandra Cambi and research technician Ben Joosten. 

Cells of the immune system such as antigen-presenting dendritic cells migrate long distances through the body, thereby crossing many tissue boundaries or basement membranes. This specialized migration process is controlled by micron-sized cytoskeletal structures called podosomes. An adequate structural framework, however, for how podosomes contribute to this process was still missing. In collaboration with biophysicists from the NKI, the ErasmusMC and McGill University, and benefiting of the Radboud Technology Center MIC, Van den Dries and colleagues have used a variety of super-resolution microscopy techniques to simultaneously image multiple podosome components in human dendritic cells on substrates with different mechanical properties.

They found that, at the nanoscale level, individual podosomes contain several functionally distinct substructures defined by different actin organizations: the very central branched actin substructure polymerizing towards the substrate is encased by filamentous actin, thus generating mechanical forces that allow the cells to protrude. They further identified another substructure composed by actin filaments that, like ropes, link each podosomes to the integrins in the cell membrane and sense differences in tissue stiffness. A fourth type of actin filaments, crosslinked by nonmuscle myosin, connects neighboring podosomes leading to force redistribution. Finally, when exposed to a stiff environment, podosomes mediate long-range substrate exploration, associated with degradative behavior, whereas on soft material, podosomes display only short-range connectivity and a protrusive, non-degradative state.

At the crossroad between cell biology and biophysics, the results from this study redefine the podosome nanoscale architecture and reveal that protrusion and tissue stiffness sensing is controlled by distinct podosome substructures, something which has important implication for how understanding how cells detect weak spots in basement membranes to cross tissue boundaries.

In a broader context, understanding how leukocytes remodel their cytoskeleton while migrating and probing the environment is relevant for several reasons: 1) leukocytes in the tissues deal with patho-physiological changes in tissue stiffness (e.g.: fibrosis, cancer stroma) that influence their function in ways that are still poorly defined; 2) leukocytes are the first cells interacting with biomaterials used for implants, which is known to in turn affect tissue regeneration; 3) many other cell types make podosomes, including osteoclasts in the bone and endothelial cells for vessel sprouting, and cancer cells make podosome-like protrusions called invadopodia that aid cancer dissemination.


 

Related news items


Prinses Beatrix Spierfonds grant to investigate patient stratification in myotonic dystrophy

24 January 2020

Rick Wansink and Roland Brock, both theme Nanomedicine, received a € 280,000 grant from the Prinses Beatrix Spierfonds.

read more

RIMLS PhD retreat registration is open

23 January 2020

Yearly, RIMLS PhD candidates gather for the two-day PhD Retreat. Apart from the science, this event is highly valued for the opportunity to meet and get to know fellow PhD candidates during the social activities. Early bird registration and abstract submission deadline: 4 March 2020.

read more

Cognitive behavioral therapy reduces severe fatigue in patients with advanced cancer during treatment

23 January 2020

In Annals of Oncology, RIHS researchers Hanneke Poort, Marlies Peters, Winette van der Graaf, Ria Nijhuis van der Sanden and colleagues showed significant effects of cognitive behavioral therapy on fatigue in patients with advanced cancer during treatment with palliative intent.

read more

6 million euros to uncover link between metabolic and brain disorders

21 January 2020

An important European-funded initiative, coordinated by Radboudumc researchers Barbara Franke, Jan Buitelaar, and Janita Bralten, has been launched to explore how common molecular mechanisms may link metabolic disorders with brain disorders.

read more

NWO Open Competition Domain Science - XS grant for Ronald van Rij and Jenny van der Wijst

21 January 2020

NWO Domain Science has awarded Ronald van Rij, theme Infectious diseases and global health and Jennny van der Wijst, theme Renal disorders an XS grant. The XS category emphatically strives to encourage curiosity-driven and bold research involving a relatively quick analysis of a promising idea.

read more

First BeNeFit funding granted for psoriasis

17 January 2020

RIHS researchers Elke de Jong and Juul van den Reek of Dermatology Radboudumc and Dermatology Ghent received a grant of 1.6 million euros for investigating dose reduction of the newest biologics for psoriasis.

read more