20 November 2019

Koen van den Dries and Alessandra Cambi, Dept. of Cell Biology, theme Nanomedicine, revealed how the nanoscale architecture of podosomes enables dendritic cells to protrude and sense their extracellular environment. They have published their results in Nature Communications.

On the photo: From left to right: Koen van den Dries, Alessandra Cambi and research technician Ben Joosten. 

Cells of the immune system such as antigen-presenting dendritic cells migrate long distances through the body, thereby crossing many tissue boundaries or basement membranes. This specialized migration process is controlled by micron-sized cytoskeletal structures called podosomes. An adequate structural framework, however, for how podosomes contribute to this process was still missing. In collaboration with biophysicists from the NKI, the ErasmusMC and McGill University, and benefiting of the Radboud Technology Center MIC, Van den Dries and colleagues have used a variety of super-resolution microscopy techniques to simultaneously image multiple podosome components in human dendritic cells on substrates with different mechanical properties.

They found that, at the nanoscale level, individual podosomes contain several functionally distinct substructures defined by different actin organizations: the very central branched actin substructure polymerizing towards the substrate is encased by filamentous actin, thus generating mechanical forces that allow the cells to protrude. They further identified another substructure composed by actin filaments that, like ropes, link each podosomes to the integrins in the cell membrane and sense differences in tissue stiffness. A fourth type of actin filaments, crosslinked by nonmuscle myosin, connects neighboring podosomes leading to force redistribution. Finally, when exposed to a stiff environment, podosomes mediate long-range substrate exploration, associated with degradative behavior, whereas on soft material, podosomes display only short-range connectivity and a protrusive, non-degradative state.

At the crossroad between cell biology and biophysics, the results from this study redefine the podosome nanoscale architecture and reveal that protrusion and tissue stiffness sensing is controlled by distinct podosome substructures, something which has important implication for how understanding how cells detect weak spots in basement membranes to cross tissue boundaries.

In a broader context, understanding how leukocytes remodel their cytoskeleton while migrating and probing the environment is relevant for several reasons: 1) leukocytes in the tissues deal with patho-physiological changes in tissue stiffness (e.g.: fibrosis, cancer stroma) that influence their function in ways that are still poorly defined; 2) leukocytes are the first cells interacting with biomaterials used for implants, which is known to in turn affect tissue regeneration; 3) many other cell types make podosomes, including osteoclasts in the bone and endothelial cells for vessel sprouting, and cancer cells make podosome-like protrusions called invadopodia that aid cancer dissemination.


 

Related news items


Less registration leads to more time for the patient

16 July 2020

On average, care providers spend more than 52 minutes of their working day on quality registrations. Only 36% of these registrations can be used to improve care and that the registration burden weighs on the motivation of care providers.

read more

Summer greetings from René Bindels

16 July 2020

In this last newsletter before most colleagues enjoy their well-deserved summer break, I would like to briefly summarize the first part of 2020 and look ahead to the many activities that will take place in the coming months of this unprecedented year.

read more

ATRO Medical, Radboudumc and Samaplast develop new meniscus prosthesis Consortium receives EUROSTARS grant for innovative project

16 July 2020

An international consortium led by ATRO Medical, a spin-off of Radboudumc and DSM, will receive € 800,000 European funding for an innovation aimed at patients with knee osteoarthritis. These patients often suffer from cartilage wear due to a meniscus that no longer works properly.

read more

First podcast 'AI for Life' about Artificial Intelligence in Nijmegen Podcast on medical image processing with Bram van Ginneken, Ritse Mann and Eva van Rikxoort

16 July 2020

The first podcast on Artificial Intelligence (AI) in Nijmegen was released today. In this podcast on spotify and anchor Bram van Ginneken, Ritse Mann and Eva van Rikxoort talk about AI and medical image processing. The next podcast is about smart chatbots.

read more

Cardiac Function in Relation to Myocardial Injury in Hospitalised Patients With COVID-19

16 July 2020

In Netherlands Heart Journal RIHS researcher Frederik van den Heuvel described that in hospitalized COVID-19 patients, it seems that COVID-19 predominantly affects the respiratory system, while cardiac dysfunction occurs less often.

read more

NeurotechEU has received the approval of European Commission

15 July 2020

The Donders Institute participates in the newly established European University for Neuroscience and Technology.

read more