21 January 2019

In preclinical prostate carcinoma in the bone, Rad-223 eradicated effectively micro-tumors but macro-tumors persisted and expanded. The data point to application of Rad-223 in secondary prevention of early bone-metastatic disease and regimens co-targeting the tumor core.

Peter Friedl, theme Cancer development and immune defense, and colleagues, published these findings in the Journal of the National Cancer Institute (JNCI).

Bone-targeting radiotherapy with Radium-223 (Rad-223), a radioisotope emitting genotoxic alpha-radiation with limited tissue penetrance (∼100 µm), prolongs the survival of patients with metastatic prostate cancer (PCa). Confoundingly, the clinical response to Rad-223 is often followed by detrimental relapse and progression, and whether Radium-223 causes tumor-cell directed cytotoxicity in vivo remains unclear. In a joint effort between the Radboudumc and the MD Anderson Cancer Center, they show that limited radiation penetrance in situ defines outcome. 
 
They tested the Radium-223 overall response in prostace cancer in mouse bones and applied intravital microscopy and in silico modeling to predict Rad-223 effectiveness in lesions of different sizes. Rad-223 caused profound cancer cell lethality along the bone interface but not the more distant tumor core. In silico simulations predicted greater efficacy of Rad-223 on single-cell lesions (eradication rate: 88.0%) and minimal effects on larger tumors (no eradication, 16.2% growth reduction in tumors of 27,306 cells), further confirmed in vivo tumors in mice. Micro-tumors showed severe growth delay or eradication in response to Rad-223, whereas macro-tumors persisted and expanded. 
 
The relative inefficacy in controlling large tumors points to application of Rad-223 in secondary prevention of early bone-metastatic disease and regimens co-targeting the bone niche together with the tumor core.

Related news items


NWO open call GROOT grant for Peter Friedl

24 February 2020 Peter Friedl, theme Cancer development and immune defense, received a 300,000 EUR grant within the NWO-GROOT consortium "Active matter of cancer metastasis" to identify the mechanisms of collective metastasis in breast cancer. read more

p120-catenin-dependent collective brain infiltration by glioma cell networks

7 January 2020 Pavlo Gritsenko and Peter Friedl, theme Cancer development and immune defense, report in Nature Cell Biology, that glioma cells infiltrate the brain by a collective network mechanism, which critically depends on p120 catenin. p120 thus represents a potential target to combat glioma. read more

Collective cancer invasion forms an integrin-dependent radioresistant niche

29 October 2019 Anna Häger and Peter Friedl, theme Cancer development and immune defense, identified a new niche of cancer cell survival and developed an integrin inhibition therapy to overcome resistance. They have published their results in JEM. read more

Three VIDI grants for RIMLS researchers

24 May 2019 Matthijs Jore, Daniele Tauriello and Johannes Textor are each to receive up to 800,000 euros to develop an innovative research theme and to build up their own research group. NWO is awarding the Vidi grant as part of the Innovational Research Incentives Scheme. read more

Peter Friedl is recognized as reviewer of the month

5 February 2019 The editors of Communications Biology recognize Peter Friedl, theme Cancer development and immune defense, as reviewer of the month for his exceptional contributions to peer review. read more

RIMLS awards festival Twelve winners

16 January 2019 In 5 categories RIMLS young researchers received an award and bonus during the New Year's drinks. See all photo's. read more