21 October 2021

Alex Garanto, Melissa Bärenfänger, Mirian Janssen, and Dirk Lefeber (Theme Metabolic Disorders & Theme Disorders of Movement) together with international colleagues have recently published a new study in the American Journal of Human Genetics identifying a surprisingly dominant genetic cause underlying type I congenital defect of glycosylation with neuromusculoskeletal phenotypes.

Congenital disorders of glycosylation (CDGs) form a group of neurometabolic diseases characterized by hypoglycosylation of proteins. They generally show autosomal recessive inheritance. In this work, 16 individuals from nine families were identified with inherited or de novo heterozygous missense variants in STT3A. STT3A encodes the catalytic subunit of the  oligosaccharyltransferase (OST) complex, essential for transfer of glycans to proteins in the Endoplasmic Reticulum.

Affected individuals presented with variable intellectual disability, skeletal anomalies, short stature, and increased muscle tone and muscle cramps. Modeling of the variants in the 3D structure of the OST complex indicated that all variants are located in the catalytic site of STT3A, suggesting a direct mechanistic link to the transfer of oligosaccharides onto nascent glycoproteins. Expression of STT3A at mRNA and steady-state protein level in fibroblasts was normal, while glycosylation was abnormal.

In contrast, previously reported autosomal recessive mutations in STT3A are located outside the catalytic domain and result in lower STT3A expression.  In S. cerevisiae, expression of STT3 containing variants induced defective glycosylation of carboxypeptidase Y in a wild-type yeast strain and expression of the same mutants in the STT3 hypomorphic stt3-7 yeast strain worsened the already observed glycosylation defect.

These data support a dominant pathomechanism, in which mutated STT3A protein variants are stably included in the OST complex, thereby resulting in a glycosylation defect. This study describes a first dominant form of CDG.

Publication

https://www.sciencedirect.com/science/article/pii/S0002929721003487?via%3Dihub

Related news items


How much should we exercise to live healthier lives? Research into the relationship between exercise, heart disease and mortality

3 December 2021

It has long been known that exercise reduces the risk of many chronic diseases. However, we do not yet know exactly how much exercise is necessary to achieve health benefit.

read more

KNAW Early Career Award for Martine Hoogman

2 December 2021

Martine Hoogman has been awarded a KNAW Early Career Award. The prize, a sum of 15,000 euros and a work of art, is aimed at researchers in the Netherlands who are at the start of their careers and have innovative, original research ideas.

read more

T-Guard can reset immune system

1 December 2021

For 20 years, the Nijmegen based Radboudumc spin-off company Xenikos has been working on a drug that can reset the immune system. This reset will save lives of seriously ill patients. Now, after years of hard work, the moment of truth has arrived for T-guard.

read more

Thomas van den Heuvel wins Stairway to Impact Award for safer pregnancies using AI Award for safer pregnancies using AI

1 December 2021

Radboudumc researcher Thomas van den Heuvel receives the Stairway to Impact Award from Dutch Research Council NWO. He receives this prize for the development of the BabyChecker, a smartphone application that allows midwives to make ultrasounds during pregnancies.

read more

Villa Joep Research Grant for Radiotherapy & OncoImmunology (ROI) lab

1 December 2021

Renske van den Bijgaart and Gosse Adema from the Radiotherapy & OncoImmunology laboratorium in collaboration with the Prinses Maxima Center received a grant from Villa Joep of 410k Euro.

read more

Participating in cancer research among people with intellectual disabilities

30 November 2021

Thanks to the support of the Maarten van der Weijden Foundation research was carried out into the participation of people with intellectual disabilities in (population) screening for cancer.

read more